Properties

Label 3645.1.n.d
Level $3645$
Weight $1$
Character orbit 3645.n
Analytic conductor $1.819$
Analytic rank $0$
Dimension $6$
Projective image $D_{3}$
CM discriminant -15
Inner twists $12$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3645,1,Mod(404,3645)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3645, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 9]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3645.404");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3645 = 3^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3645.n (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.81909197105\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 135)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.135.1
Artin image: $S_3\times C_9$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{18} + \cdots)\)

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{18}^{8} q^{2} + \zeta_{18}^{4} q^{5} + \zeta_{18}^{6} q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q - \zeta_{18}^{8} q^{2} + \zeta_{18}^{4} q^{5} + \zeta_{18}^{6} q^{8} + \zeta_{18}^{3} q^{10} + \zeta_{18}^{5} q^{16} + \zeta_{18}^{3} q^{17} - \zeta_{18}^{6} q^{19} + \zeta_{18}^{7} q^{23} + \zeta_{18}^{8} q^{25} + \zeta_{18}^{7} q^{31} + \zeta_{18}^{2} q^{34} - \zeta_{18}^{5} q^{38} - \zeta_{18} q^{40} + \zeta_{18}^{6} q^{46} + 2 \zeta_{18}^{2} q^{47} + \zeta_{18}^{4} q^{49} + \zeta_{18}^{7} q^{50} - q^{53} - \zeta_{18}^{2} q^{61} + \zeta_{18}^{6} q^{62} - \zeta_{18}^{3} q^{64} - \zeta_{18}^{8} q^{79} - q^{80} - \zeta_{18}^{8} q^{83} + \zeta_{18}^{7} q^{85} + 2 \zeta_{18} q^{94} + \zeta_{18} q^{95} + \zeta_{18}^{3} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 3 q^{8} + 3 q^{10} + 3 q^{17} + 3 q^{19} - 3 q^{46} - 6 q^{53} - 3 q^{62} - 3 q^{64} - 6 q^{80} + 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3645\mathbb{Z}\right)^\times\).

\(n\) \(731\) \(2917\)
\(\chi(n)\) \(\zeta_{18}^{7}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
404.1
−0.766044 0.642788i
−0.173648 0.984808i
0.939693 0.342020i
0.939693 + 0.342020i
−0.173648 + 0.984808i
−0.766044 + 0.642788i
−0.766044 + 0.642788i 0 0 −0.939693 + 0.342020i 0 0 −0.500000 0.866025i 0 0.500000 0.866025i
809.1 −0.173648 + 0.984808i 0 0 0.766044 0.642788i 0 0 −0.500000 + 0.866025i 0 0.500000 + 0.866025i
1619.1 0.939693 + 0.342020i 0 0 0.173648 0.984808i 0 0 −0.500000 0.866025i 0 0.500000 0.866025i
2024.1 0.939693 0.342020i 0 0 0.173648 + 0.984808i 0 0 −0.500000 + 0.866025i 0 0.500000 + 0.866025i
2834.1 −0.173648 0.984808i 0 0 0.766044 + 0.642788i 0 0 −0.500000 0.866025i 0 0.500000 0.866025i
3239.1 −0.766044 0.642788i 0 0 −0.939693 0.342020i 0 0 −0.500000 + 0.866025i 0 0.500000 + 0.866025i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 404.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
9.c even 3 2 inner
27.e even 9 3 inner
45.h odd 6 2 inner
135.n odd 18 3 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3645.1.n.d 6
3.b odd 2 1 3645.1.n.e 6
5.b even 2 1 3645.1.n.e 6
9.c even 3 2 inner 3645.1.n.d 6
9.d odd 6 2 3645.1.n.e 6
15.d odd 2 1 CM 3645.1.n.d 6
27.e even 9 1 135.1.d.a 1
27.e even 9 2 405.1.h.b 2
27.e even 9 3 inner 3645.1.n.d 6
27.f odd 18 1 135.1.d.b yes 1
27.f odd 18 2 405.1.h.a 2
27.f odd 18 3 3645.1.n.e 6
45.h odd 6 2 inner 3645.1.n.d 6
45.j even 6 2 3645.1.n.e 6
108.j odd 18 1 2160.1.c.b 1
108.l even 18 1 2160.1.c.a 1
135.n odd 18 1 135.1.d.a 1
135.n odd 18 2 405.1.h.b 2
135.n odd 18 3 inner 3645.1.n.d 6
135.p even 18 1 135.1.d.b yes 1
135.p even 18 2 405.1.h.a 2
135.p even 18 3 3645.1.n.e 6
135.q even 36 2 675.1.c.c 2
135.q even 36 4 2025.1.j.c 4
135.r odd 36 2 675.1.c.c 2
135.r odd 36 4 2025.1.j.c 4
540.bb even 18 1 2160.1.c.b 1
540.bf odd 18 1 2160.1.c.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
135.1.d.a 1 27.e even 9 1
135.1.d.a 1 135.n odd 18 1
135.1.d.b yes 1 27.f odd 18 1
135.1.d.b yes 1 135.p even 18 1
405.1.h.a 2 27.f odd 18 2
405.1.h.a 2 135.p even 18 2
405.1.h.b 2 27.e even 9 2
405.1.h.b 2 135.n odd 18 2
675.1.c.c 2 135.q even 36 2
675.1.c.c 2 135.r odd 36 2
2025.1.j.c 4 135.q even 36 4
2025.1.j.c 4 135.r odd 36 4
2160.1.c.a 1 108.l even 18 1
2160.1.c.a 1 540.bf odd 18 1
2160.1.c.b 1 108.j odd 18 1
2160.1.c.b 1 540.bb even 18 1
3645.1.n.d 6 1.a even 1 1 trivial
3645.1.n.d 6 9.c even 3 2 inner
3645.1.n.d 6 15.d odd 2 1 CM
3645.1.n.d 6 27.e even 9 3 inner
3645.1.n.d 6 45.h odd 6 2 inner
3645.1.n.d 6 135.n odd 18 3 inner
3645.1.n.e 6 3.b odd 2 1
3645.1.n.e 6 5.b even 2 1
3645.1.n.e 6 9.d odd 6 2
3645.1.n.e 6 27.f odd 18 3
3645.1.n.e 6 45.j even 6 2
3645.1.n.e 6 135.p even 18 3

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} - T_{2}^{3} + 1 \) acting on \(S_{1}^{\mathrm{new}}(3645, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - T^{3} + 1 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + T^{3} + 1 \) Copy content Toggle raw display
$7$ \( T^{6} \) Copy content Toggle raw display
$11$ \( T^{6} \) Copy content Toggle raw display
$13$ \( T^{6} \) Copy content Toggle raw display
$17$ \( (T^{2} - T + 1)^{3} \) Copy content Toggle raw display
$19$ \( (T^{2} - T + 1)^{3} \) Copy content Toggle raw display
$23$ \( T^{6} - T^{3} + 1 \) Copy content Toggle raw display
$29$ \( T^{6} \) Copy content Toggle raw display
$31$ \( T^{6} - T^{3} + 1 \) Copy content Toggle raw display
$37$ \( T^{6} \) Copy content Toggle raw display
$41$ \( T^{6} \) Copy content Toggle raw display
$43$ \( T^{6} \) Copy content Toggle raw display
$47$ \( T^{6} + 8T^{3} + 64 \) Copy content Toggle raw display
$53$ \( (T + 1)^{6} \) Copy content Toggle raw display
$59$ \( T^{6} \) Copy content Toggle raw display
$61$ \( T^{6} - T^{3} + 1 \) Copy content Toggle raw display
$67$ \( T^{6} \) Copy content Toggle raw display
$71$ \( T^{6} \) Copy content Toggle raw display
$73$ \( T^{6} \) Copy content Toggle raw display
$79$ \( T^{6} - T^{3} + 1 \) Copy content Toggle raw display
$83$ \( T^{6} - T^{3} + 1 \) Copy content Toggle raw display
$89$ \( T^{6} \) Copy content Toggle raw display
$97$ \( T^{6} \) Copy content Toggle raw display
show more
show less