L(s) = 1 | + (0.984 + 0.173i)3-s + (0.939 + 0.342i)9-s + (−0.984 − 1.70i)11-s + (0.592 − 1.62i)17-s + (0.642 − 0.766i)19-s + (−0.173 + 0.984i)25-s + (0.866 + 0.5i)27-s + (−0.673 − 1.85i)33-s + (−1.26 + 0.223i)41-s + (−0.642 − 0.766i)43-s + (0.5 + 0.866i)49-s + (0.866 − 1.5i)51-s + (0.766 − 0.642i)57-s + (1.85 + 0.673i)59-s + (−0.524 − 1.43i)67-s + ⋯ |
L(s) = 1 | + (0.984 + 0.173i)3-s + (0.939 + 0.342i)9-s + (−0.984 − 1.70i)11-s + (0.592 − 1.62i)17-s + (0.642 − 0.766i)19-s + (−0.173 + 0.984i)25-s + (0.866 + 0.5i)27-s + (−0.673 − 1.85i)33-s + (−1.26 + 0.223i)41-s + (−0.642 − 0.766i)43-s + (0.5 + 0.866i)49-s + (0.866 − 1.5i)51-s + (0.766 − 0.642i)57-s + (1.85 + 0.673i)59-s + (−0.524 − 1.43i)67-s + ⋯ |
Λ(s)=(=(3648s/2ΓC(s)L(s)(0.796+0.605i)Λ(1−s)
Λ(s)=(=(3648s/2ΓC(s)L(s)(0.796+0.605i)Λ(1−s)
Degree: |
2 |
Conductor: |
3648
= 26⋅3⋅19
|
Sign: |
0.796+0.605i
|
Analytic conductor: |
1.82058 |
Root analytic conductor: |
1.34929 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3648(1505,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3648, ( :0), 0.796+0.605i)
|
Particular Values
L(21) |
≈ |
1.771688259 |
L(21) |
≈ |
1.771688259 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.984−0.173i)T |
| 19 | 1+(−0.642+0.766i)T |
good | 5 | 1+(0.173−0.984i)T2 |
| 7 | 1+(−0.5−0.866i)T2 |
| 11 | 1+(0.984+1.70i)T+(−0.5+0.866i)T2 |
| 13 | 1+(0.939+0.342i)T2 |
| 17 | 1+(−0.592+1.62i)T+(−0.766−0.642i)T2 |
| 23 | 1+(−0.173−0.984i)T2 |
| 29 | 1+(0.766−0.642i)T2 |
| 31 | 1+(−0.5−0.866i)T2 |
| 37 | 1−T2 |
| 41 | 1+(1.26−0.223i)T+(0.939−0.342i)T2 |
| 43 | 1+(0.642+0.766i)T+(−0.173+0.984i)T2 |
| 47 | 1+(−0.766+0.642i)T2 |
| 53 | 1+(0.173+0.984i)T2 |
| 59 | 1+(−1.85−0.673i)T+(0.766+0.642i)T2 |
| 61 | 1+(−0.173−0.984i)T2 |
| 67 | 1+(0.524+1.43i)T+(−0.766+0.642i)T2 |
| 71 | 1+(−0.173+0.984i)T2 |
| 73 | 1+(−0.0603−0.342i)T+(−0.939+0.342i)T2 |
| 79 | 1+(−0.939+0.342i)T2 |
| 83 | 1+(0.642−1.11i)T+(−0.5−0.866i)T2 |
| 89 | 1+(−1.70−0.300i)T+(0.939+0.342i)T2 |
| 97 | 1+(−1.43−0.524i)T+(0.766+0.642i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.762010809862934916659358327807, −7.85108638894539889829737042022, −7.45198972553148557193512616093, −6.55510365160858595890345541378, −5.30434768600568420108627641660, −5.08852501163917657357948832792, −3.68279746332861527512513371104, −3.11069637083326590936075746099, −2.45750924604200177437153775365, −0.953782183387318593115696336111,
1.60565034033900899601810210616, 2.23230158869384251179304366468, 3.30157055361918722670584628349, 4.08026591731518938181641787379, 4.87987001330719608855420080461, 5.82324040755104973501310443369, 6.81380425985596889473925895333, 7.43864280397100319588822310277, 8.140805700756887183400755094462, 8.517213896324654279251070930488