L(s) = 1 | + (0.984 + 0.173i)3-s + (0.939 + 0.342i)9-s + (−0.984 − 1.70i)11-s + (0.592 − 1.62i)17-s + (0.642 − 0.766i)19-s + (−0.173 + 0.984i)25-s + (0.866 + 0.5i)27-s + (−0.673 − 1.85i)33-s + (−1.26 + 0.223i)41-s + (−0.642 − 0.766i)43-s + (0.5 + 0.866i)49-s + (0.866 − 1.5i)51-s + (0.766 − 0.642i)57-s + (1.85 + 0.673i)59-s + (−0.524 − 1.43i)67-s + ⋯ |
L(s) = 1 | + (0.984 + 0.173i)3-s + (0.939 + 0.342i)9-s + (−0.984 − 1.70i)11-s + (0.592 − 1.62i)17-s + (0.642 − 0.766i)19-s + (−0.173 + 0.984i)25-s + (0.866 + 0.5i)27-s + (−0.673 − 1.85i)33-s + (−1.26 + 0.223i)41-s + (−0.642 − 0.766i)43-s + (0.5 + 0.866i)49-s + (0.866 − 1.5i)51-s + (0.766 − 0.642i)57-s + (1.85 + 0.673i)59-s + (−0.524 − 1.43i)67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.796 + 0.605i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.796 + 0.605i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.771688259\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.771688259\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.984 - 0.173i)T \) |
| 19 | \( 1 + (-0.642 + 0.766i)T \) |
good | 5 | \( 1 + (0.173 - 0.984i)T^{2} \) |
| 7 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.984 + 1.70i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 17 | \( 1 + (-0.592 + 1.62i)T + (-0.766 - 0.642i)T^{2} \) |
| 23 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 29 | \( 1 + (0.766 - 0.642i)T^{2} \) |
| 31 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (1.26 - 0.223i)T + (0.939 - 0.342i)T^{2} \) |
| 43 | \( 1 + (0.642 + 0.766i)T + (-0.173 + 0.984i)T^{2} \) |
| 47 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 53 | \( 1 + (0.173 + 0.984i)T^{2} \) |
| 59 | \( 1 + (-1.85 - 0.673i)T + (0.766 + 0.642i)T^{2} \) |
| 61 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 67 | \( 1 + (0.524 + 1.43i)T + (-0.766 + 0.642i)T^{2} \) |
| 71 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 73 | \( 1 + (-0.0603 - 0.342i)T + (-0.939 + 0.342i)T^{2} \) |
| 79 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
| 83 | \( 1 + (0.642 - 1.11i)T + (-0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (-1.70 - 0.300i)T + (0.939 + 0.342i)T^{2} \) |
| 97 | \( 1 + (-1.43 - 0.524i)T + (0.766 + 0.642i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.762010809862934916659358327807, −7.85108638894539889829737042022, −7.45198972553148557193512616093, −6.55510365160858595890345541378, −5.30434768600568420108627641660, −5.08852501163917657357948832792, −3.68279746332861527512513371104, −3.11069637083326590936075746099, −2.45750924604200177437153775365, −0.953782183387318593115696336111,
1.60565034033900899601810210616, 2.23230158869384251179304366468, 3.30157055361918722670584628349, 4.08026591731518938181641787379, 4.87987001330719608855420080461, 5.82324040755104973501310443369, 6.81380425985596889473925895333, 7.43864280397100319588822310277, 8.140805700756887183400755094462, 8.517213896324654279251070930488