Properties

Label 3648.1.cn.b
Level 36483648
Weight 11
Character orbit 3648.cn
Analytic conductor 1.8211.821
Analytic rank 00
Dimension 1212
Projective image D18D_{18}
CM discriminant -8
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3648,1,Mod(161,3648)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3648, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 9, 9, 8]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3648.161");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3648=26319 3648 = 2^{6} \cdot 3 \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3648.cn (of order 1818, degree 66, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.820589166091.82058916609
Analytic rank: 00
Dimension: 1212
Relative dimension: 22 over Q(ζ18)\Q(\zeta_{18})
Coefficient field: Q(ζ36)\Q(\zeta_{36})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x12x6+1 x^{12} - x^{6} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D18D_{18}
Projective field: Galois closure of Q[x]/(x18)\mathbb{Q}[x]/(x^{18} - \cdots)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+ζ3611q3ζ364q9+(ζ365+ζ36)q11+(ζ3616ζ3610)q17+ζ3617q19+ζ362q25ζ3615q27++(ζ369ζ365)q99+O(q100) q + \zeta_{36}^{11} q^{3} - \zeta_{36}^{4} q^{9} + ( - \zeta_{36}^{5} + \zeta_{36}) q^{11} + ( - \zeta_{36}^{16} - \zeta_{36}^{10}) q^{17} + \zeta_{36}^{17} q^{19} + \zeta_{36}^{2} q^{25} - \zeta_{36}^{15} q^{27} + \cdots + (\zeta_{36}^{9} - \zeta_{36}^{5}) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q6q336q41+6q49+12q73+6q97+O(q100) 12 q - 6 q^{33} - 6 q^{41} + 6 q^{49} + 12 q^{73} + 6 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3648Z)×\left(\mathbb{Z}/3648\mathbb{Z}\right)^\times.

nn 12171217 19211921 20532053 26232623
χ(n)\chi(n) 1-1 ζ368\zeta_{36}^{8} 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
161.1
−0.342020 + 0.939693i
0.342020 0.939693i
−0.342020 0.939693i
0.342020 + 0.939693i
0.642788 + 0.766044i
−0.642788 0.766044i
0.984808 0.173648i
−0.984808 + 0.173648i
0.984808 + 0.173648i
−0.984808 0.173648i
0.642788 0.766044i
−0.642788 + 0.766044i
0 −0.642788 + 0.766044i 0 0 0 0 0 −0.173648 0.984808i 0
161.2 0 0.642788 0.766044i 0 0 0 0 0 −0.173648 0.984808i 0
929.1 0 −0.642788 0.766044i 0 0 0 0 0 −0.173648 + 0.984808i 0
929.2 0 0.642788 + 0.766044i 0 0 0 0 0 −0.173648 + 0.984808i 0
1505.1 0 −0.984808 0.173648i 0 0 0 0 0 0.939693 + 0.342020i 0
1505.2 0 0.984808 + 0.173648i 0 0 0 0 0 0.939693 + 0.342020i 0
1697.1 0 −0.342020 0.939693i 0 0 0 0 0 −0.766044 + 0.642788i 0
1697.2 0 0.342020 + 0.939693i 0 0 0 0 0 −0.766044 + 0.642788i 0
2657.1 0 −0.342020 + 0.939693i 0 0 0 0 0 −0.766044 0.642788i 0
2657.2 0 0.342020 0.939693i 0 0 0 0 0 −0.766044 0.642788i 0
3425.1 0 −0.984808 + 0.173648i 0 0 0 0 0 0.939693 0.342020i 0
3425.2 0 0.984808 0.173648i 0 0 0 0 0 0.939693 0.342020i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 161.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by Q(2)\Q(\sqrt{-2})
4.b odd 2 1 inner
8.b even 2 1 inner
57.l odd 18 1 inner
228.v even 18 1 inner
456.bh odd 18 1 inner
456.bu even 18 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3648.1.cn.b 12
3.b odd 2 1 3648.1.cn.d yes 12
4.b odd 2 1 inner 3648.1.cn.b 12
8.b even 2 1 inner 3648.1.cn.b 12
8.d odd 2 1 CM 3648.1.cn.b 12
12.b even 2 1 3648.1.cn.d yes 12
19.e even 9 1 3648.1.cn.d yes 12
24.f even 2 1 3648.1.cn.d yes 12
24.h odd 2 1 3648.1.cn.d yes 12
57.l odd 18 1 inner 3648.1.cn.b 12
76.l odd 18 1 3648.1.cn.d yes 12
152.t even 18 1 3648.1.cn.d yes 12
152.u odd 18 1 3648.1.cn.d yes 12
228.v even 18 1 inner 3648.1.cn.b 12
456.bh odd 18 1 inner 3648.1.cn.b 12
456.bu even 18 1 inner 3648.1.cn.b 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3648.1.cn.b 12 1.a even 1 1 trivial
3648.1.cn.b 12 4.b odd 2 1 inner
3648.1.cn.b 12 8.b even 2 1 inner
3648.1.cn.b 12 8.d odd 2 1 CM
3648.1.cn.b 12 57.l odd 18 1 inner
3648.1.cn.b 12 228.v even 18 1 inner
3648.1.cn.b 12 456.bh odd 18 1 inner
3648.1.cn.b 12 456.bu even 18 1 inner
3648.1.cn.d yes 12 3.b odd 2 1
3648.1.cn.d yes 12 12.b even 2 1
3648.1.cn.d yes 12 19.e even 9 1
3648.1.cn.d yes 12 24.f even 2 1
3648.1.cn.d yes 12 24.h odd 2 1
3648.1.cn.d yes 12 76.l odd 18 1
3648.1.cn.d yes 12 152.t even 18 1
3648.1.cn.d yes 12 152.u odd 18 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(3648,[χ])S_{1}^{\mathrm{new}}(3648, [\chi]):

T7 T_{7} Copy content Toggle raw display
T13 T_{13} Copy content Toggle raw display
T176+9T173+27 T_{17}^{6} + 9T_{17}^{3} + 27 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12 T^{12} Copy content Toggle raw display
33 T12T6+1 T^{12} - T^{6} + 1 Copy content Toggle raw display
55 T12 T^{12} Copy content Toggle raw display
77 T12 T^{12} Copy content Toggle raw display
1111 T12+6T10++9 T^{12} + 6 T^{10} + \cdots + 9 Copy content Toggle raw display
1313 T12 T^{12} Copy content Toggle raw display
1717 (T6+9T3+27)2 (T^{6} + 9 T^{3} + 27)^{2} Copy content Toggle raw display
1919 T12T6+1 T^{12} - T^{6} + 1 Copy content Toggle raw display
2323 T12 T^{12} Copy content Toggle raw display
2929 T12 T^{12} Copy content Toggle raw display
3131 T12 T^{12} Copy content Toggle raw display
3737 T12 T^{12} Copy content Toggle raw display
4141 (T6+3T5+6T4++3)2 (T^{6} + 3 T^{5} + 6 T^{4} + \cdots + 3)^{2} Copy content Toggle raw display
4343 T12T6+1 T^{12} - T^{6} + 1 Copy content Toggle raw display
4747 T12 T^{12} Copy content Toggle raw display
5353 T12 T^{12} Copy content Toggle raw display
5959 T123T10++9 T^{12} - 3 T^{10} + \cdots + 9 Copy content Toggle raw display
6161 T12 T^{12} Copy content Toggle raw display
6767 T123T10++1 T^{12} - 3 T^{10} + \cdots + 1 Copy content Toggle raw display
7171 T12 T^{12} Copy content Toggle raw display
7373 (T66T5+15T4++1)2 (T^{6} - 6 T^{5} + 15 T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
7979 T12 T^{12} Copy content Toggle raw display
8383 T12+6T10++9 T^{12} + 6 T^{10} + \cdots + 9 Copy content Toggle raw display
8989 (T69T3+27)2 (T^{6} - 9 T^{3} + 27)^{2} Copy content Toggle raw display
9797 (T63T5+6T4++1)2 (T^{6} - 3 T^{5} + 6 T^{4} + \cdots + 1)^{2} Copy content Toggle raw display
show more
show less