L(s) = 1 | + (−0.342 + 0.939i)3-s + (−0.766 − 0.642i)9-s + (0.342 − 0.592i)11-s + (1.11 − 1.32i)17-s + (−0.984 + 0.173i)19-s + (0.939 + 0.342i)25-s + (0.866 − 0.500i)27-s + (0.439 + 0.524i)33-s + (−0.673 − 1.85i)41-s + (0.984 + 0.173i)43-s + (0.5 − 0.866i)49-s + (0.866 + 1.5i)51-s + (0.173 − 0.984i)57-s + (0.524 + 0.439i)59-s + (−0.223 − 0.266i)67-s + ⋯ |
L(s) = 1 | + (−0.342 + 0.939i)3-s + (−0.766 − 0.642i)9-s + (0.342 − 0.592i)11-s + (1.11 − 1.32i)17-s + (−0.984 + 0.173i)19-s + (0.939 + 0.342i)25-s + (0.866 − 0.500i)27-s + (0.439 + 0.524i)33-s + (−0.673 − 1.85i)41-s + (0.984 + 0.173i)43-s + (0.5 − 0.866i)49-s + (0.866 + 1.5i)51-s + (0.173 − 0.984i)57-s + (0.524 + 0.439i)59-s + (−0.223 − 0.266i)67-s + ⋯ |
Λ(s)=(=(3648s/2ΓC(s)L(s)(0.994−0.102i)Λ(1−s)
Λ(s)=(=(3648s/2ΓC(s)L(s)(0.994−0.102i)Λ(1−s)
Degree: |
2 |
Conductor: |
3648
= 26⋅3⋅19
|
Sign: |
0.994−0.102i
|
Analytic conductor: |
1.82058 |
Root analytic conductor: |
1.34929 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3648(2657,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3648, ( :0), 0.994−0.102i)
|
Particular Values
L(21) |
≈ |
1.108599482 |
L(21) |
≈ |
1.108599482 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.342−0.939i)T |
| 19 | 1+(0.984−0.173i)T |
good | 5 | 1+(−0.939−0.342i)T2 |
| 7 | 1+(−0.5+0.866i)T2 |
| 11 | 1+(−0.342+0.592i)T+(−0.5−0.866i)T2 |
| 13 | 1+(−0.766−0.642i)T2 |
| 17 | 1+(−1.11+1.32i)T+(−0.173−0.984i)T2 |
| 23 | 1+(0.939−0.342i)T2 |
| 29 | 1+(0.173−0.984i)T2 |
| 31 | 1+(−0.5+0.866i)T2 |
| 37 | 1−T2 |
| 41 | 1+(0.673+1.85i)T+(−0.766+0.642i)T2 |
| 43 | 1+(−0.984−0.173i)T+(0.939+0.342i)T2 |
| 47 | 1+(−0.173+0.984i)T2 |
| 53 | 1+(−0.939+0.342i)T2 |
| 59 | 1+(−0.524−0.439i)T+(0.173+0.984i)T2 |
| 61 | 1+(0.939−0.342i)T2 |
| 67 | 1+(0.223+0.266i)T+(−0.173+0.984i)T2 |
| 71 | 1+(0.939+0.342i)T2 |
| 73 | 1+(−1.76+0.642i)T+(0.766−0.642i)T2 |
| 79 | 1+(0.766−0.642i)T2 |
| 83 | 1+(−0.984−1.70i)T+(−0.5+0.866i)T2 |
| 89 | 1+(0.592−1.62i)T+(−0.766−0.642i)T2 |
| 97 | 1+(0.266+0.223i)T+(0.173+0.984i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.884164969455163057215756407074, −8.164152900763519815826663399505, −7.15348015964899026017473006046, −6.44158803482475733172538469229, −5.50336553557779452634447457251, −5.09837537764155148317827452033, −4.04631334680109379550394919562, −3.41773408399465839820751644819, −2.47058596461490476184107435321, −0.804339778197589735333228525516,
1.14639102873515493502938980252, 2.04262007316300886589696236881, 3.05443777336045688085072335518, 4.15768360399769412074864631055, 5.00341499560778245170418347973, 5.94925101002878754183884946271, 6.45313140311597192840299175408, 7.17630719485387965949301279286, 7.992802947513609719414396457744, 8.454694471970046572291338816492