Properties

Label 2-3648-456.149-c0-0-4
Degree $2$
Conductor $3648$
Sign $0.994 - 0.102i$
Analytic cond. $1.82058$
Root an. cond. $1.34929$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.342 + 0.939i)3-s + (−0.766 − 0.642i)9-s + (0.342 − 0.592i)11-s + (1.11 − 1.32i)17-s + (−0.984 + 0.173i)19-s + (0.939 + 0.342i)25-s + (0.866 − 0.500i)27-s + (0.439 + 0.524i)33-s + (−0.673 − 1.85i)41-s + (0.984 + 0.173i)43-s + (0.5 − 0.866i)49-s + (0.866 + 1.5i)51-s + (0.173 − 0.984i)57-s + (0.524 + 0.439i)59-s + (−0.223 − 0.266i)67-s + ⋯
L(s)  = 1  + (−0.342 + 0.939i)3-s + (−0.766 − 0.642i)9-s + (0.342 − 0.592i)11-s + (1.11 − 1.32i)17-s + (−0.984 + 0.173i)19-s + (0.939 + 0.342i)25-s + (0.866 − 0.500i)27-s + (0.439 + 0.524i)33-s + (−0.673 − 1.85i)41-s + (0.984 + 0.173i)43-s + (0.5 − 0.866i)49-s + (0.866 + 1.5i)51-s + (0.173 − 0.984i)57-s + (0.524 + 0.439i)59-s + (−0.223 − 0.266i)67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.994 - 0.102i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3648 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.994 - 0.102i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3648\)    =    \(2^{6} \cdot 3 \cdot 19\)
Sign: $0.994 - 0.102i$
Analytic conductor: \(1.82058\)
Root analytic conductor: \(1.34929\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3648} (2657, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3648,\ (\ :0),\ 0.994 - 0.102i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.108599482\)
\(L(\frac12)\) \(\approx\) \(1.108599482\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (0.342 - 0.939i)T \)
19 \( 1 + (0.984 - 0.173i)T \)
good5 \( 1 + (-0.939 - 0.342i)T^{2} \)
7 \( 1 + (-0.5 + 0.866i)T^{2} \)
11 \( 1 + (-0.342 + 0.592i)T + (-0.5 - 0.866i)T^{2} \)
13 \( 1 + (-0.766 - 0.642i)T^{2} \)
17 \( 1 + (-1.11 + 1.32i)T + (-0.173 - 0.984i)T^{2} \)
23 \( 1 + (0.939 - 0.342i)T^{2} \)
29 \( 1 + (0.173 - 0.984i)T^{2} \)
31 \( 1 + (-0.5 + 0.866i)T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 + (0.673 + 1.85i)T + (-0.766 + 0.642i)T^{2} \)
43 \( 1 + (-0.984 - 0.173i)T + (0.939 + 0.342i)T^{2} \)
47 \( 1 + (-0.173 + 0.984i)T^{2} \)
53 \( 1 + (-0.939 + 0.342i)T^{2} \)
59 \( 1 + (-0.524 - 0.439i)T + (0.173 + 0.984i)T^{2} \)
61 \( 1 + (0.939 - 0.342i)T^{2} \)
67 \( 1 + (0.223 + 0.266i)T + (-0.173 + 0.984i)T^{2} \)
71 \( 1 + (0.939 + 0.342i)T^{2} \)
73 \( 1 + (-1.76 + 0.642i)T + (0.766 - 0.642i)T^{2} \)
79 \( 1 + (0.766 - 0.642i)T^{2} \)
83 \( 1 + (-0.984 - 1.70i)T + (-0.5 + 0.866i)T^{2} \)
89 \( 1 + (0.592 - 1.62i)T + (-0.766 - 0.642i)T^{2} \)
97 \( 1 + (0.266 + 0.223i)T + (0.173 + 0.984i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.884164969455163057215756407074, −8.164152900763519815826663399505, −7.15348015964899026017473006046, −6.44158803482475733172538469229, −5.50336553557779452634447457251, −5.09837537764155148317827452033, −4.04631334680109379550394919562, −3.41773408399465839820751644819, −2.47058596461490476184107435321, −0.804339778197589735333228525516, 1.14639102873515493502938980252, 2.04262007316300886589696236881, 3.05443777336045688085072335518, 4.15768360399769412074864631055, 5.00341499560778245170418347973, 5.94925101002878754183884946271, 6.45313140311597192840299175408, 7.17630719485387965949301279286, 7.992802947513609719414396457744, 8.454694471970046572291338816492

Graph of the $Z$-function along the critical line