L(s) = 1 | + (0.5 + 0.866i)2-s − 3-s + (−0.499 + 0.866i)4-s + (2.19 + 3.79i)5-s + (−0.5 − 0.866i)6-s + (−0.135 − 0.234i)7-s − 0.999·8-s + 9-s + (−2.19 + 3.79i)10-s − 0.270·11-s + (0.499 − 0.866i)12-s + (−1.27 − 2.20i)13-s + (0.135 − 0.234i)14-s + (−2.19 − 3.79i)15-s + (−0.5 − 0.866i)16-s + (−3.42 + 5.92i)17-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s − 0.577·3-s + (−0.249 + 0.433i)4-s + (0.980 + 1.69i)5-s + (−0.204 − 0.353i)6-s + (−0.0511 − 0.0886i)7-s − 0.353·8-s + 0.333·9-s + (−0.693 + 1.20i)10-s − 0.0816·11-s + (0.144 − 0.249i)12-s + (−0.352 − 0.610i)13-s + (0.0361 − 0.0626i)14-s + (−0.566 − 0.980i)15-s + (−0.125 − 0.216i)16-s + (−0.829 + 1.43i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 366 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.614 - 0.789i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 366 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.614 - 0.789i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.616926 + 1.26171i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.616926 + 1.26171i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 + T \) |
| 61 | \( 1 + (-7.17 - 3.09i)T \) |
good | 5 | \( 1 + (-2.19 - 3.79i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (0.135 + 0.234i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + 0.270T + 11T^{2} \) |
| 13 | \( 1 + (1.27 + 2.20i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (3.42 - 5.92i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-1 + 1.73i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 - 5.11T + 23T^{2} \) |
| 29 | \( 1 + (-0.229 + 0.396i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1 + 1.73i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 6.11T + 37T^{2} \) |
| 41 | \( 1 - 2.72T + 41T^{2} \) |
| 43 | \( 1 + (-4.82 - 8.36i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-4.94 + 8.56i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 8.61T + 53T^{2} \) |
| 59 | \( 1 + (5.38 + 9.32i)T + (-29.5 + 51.0i)T^{2} \) |
| 67 | \( 1 + (-1.55 - 2.69i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.729 + 1.26i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-2.5 + 4.33i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (3.84 + 6.65i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (1.86 + 3.22i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 13.7T + 89T^{2} \) |
| 97 | \( 1 + (-3.07 + 5.33i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.59711143097059488862479245753, −10.67656312024268872347107309141, −10.21500934750857306971733249691, −9.014858861002340517890092113886, −7.56783690411986937432772721642, −6.75976730989470201309205422865, −6.12209682195960143587886093672, −5.20062893242564309661969009716, −3.63700910620987928193226476679, −2.37000302787835444948396067627,
0.959667105738758616862177625672, 2.33604205950120538196913605650, 4.36973121353154548142364689998, 5.07283175500246624142591699511, 5.81810472280475581351845273222, 7.12065351943739252519272864986, 8.825684818222730411797383662559, 9.254709291459052360748344957121, 10.14872279371118090352264822472, 11.25645018488591354390139217763