L(s) = 1 | + (0.5 + 0.866i)2-s − 3-s + (−0.499 + 0.866i)4-s + (2.19 + 3.79i)5-s + (−0.5 − 0.866i)6-s + (−0.135 − 0.234i)7-s − 0.999·8-s + 9-s + (−2.19 + 3.79i)10-s − 0.270·11-s + (0.499 − 0.866i)12-s + (−1.27 − 2.20i)13-s + (0.135 − 0.234i)14-s + (−2.19 − 3.79i)15-s + (−0.5 − 0.866i)16-s + (−3.42 + 5.92i)17-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s − 0.577·3-s + (−0.249 + 0.433i)4-s + (0.980 + 1.69i)5-s + (−0.204 − 0.353i)6-s + (−0.0511 − 0.0886i)7-s − 0.353·8-s + 0.333·9-s + (−0.693 + 1.20i)10-s − 0.0816·11-s + (0.144 − 0.249i)12-s + (−0.352 − 0.610i)13-s + (0.0361 − 0.0626i)14-s + (−0.566 − 0.980i)15-s + (−0.125 − 0.216i)16-s + (−0.829 + 1.43i)17-s + ⋯ |
Λ(s)=(=(366s/2ΓC(s)L(s)(−0.614−0.789i)Λ(2−s)
Λ(s)=(=(366s/2ΓC(s+1/2)L(s)(−0.614−0.789i)Λ(1−s)
Degree: |
2 |
Conductor: |
366
= 2⋅3⋅61
|
Sign: |
−0.614−0.789i
|
Analytic conductor: |
2.92252 |
Root analytic conductor: |
1.70953 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ366(169,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 366, ( :1/2), −0.614−0.789i)
|
Particular Values
L(1) |
≈ |
0.616926+1.26171i |
L(21) |
≈ |
0.616926+1.26171i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5−0.866i)T |
| 3 | 1+T |
| 61 | 1+(−7.17−3.09i)T |
good | 5 | 1+(−2.19−3.79i)T+(−2.5+4.33i)T2 |
| 7 | 1+(0.135+0.234i)T+(−3.5+6.06i)T2 |
| 11 | 1+0.270T+11T2 |
| 13 | 1+(1.27+2.20i)T+(−6.5+11.2i)T2 |
| 17 | 1+(3.42−5.92i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−1+1.73i)T+(−9.5−16.4i)T2 |
| 23 | 1−5.11T+23T2 |
| 29 | 1+(−0.229+0.396i)T+(−14.5−25.1i)T2 |
| 31 | 1+(−1+1.73i)T+(−15.5−26.8i)T2 |
| 37 | 1+6.11T+37T2 |
| 41 | 1−2.72T+41T2 |
| 43 | 1+(−4.82−8.36i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−4.94+8.56i)T+(−23.5−40.7i)T2 |
| 53 | 1−8.61T+53T2 |
| 59 | 1+(5.38+9.32i)T+(−29.5+51.0i)T2 |
| 67 | 1+(−1.55−2.69i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−0.729+1.26i)T+(−35.5−61.4i)T2 |
| 73 | 1+(−2.5+4.33i)T+(−36.5−63.2i)T2 |
| 79 | 1+(3.84+6.65i)T+(−39.5+68.4i)T2 |
| 83 | 1+(1.86+3.22i)T+(−41.5+71.8i)T2 |
| 89 | 1−13.7T+89T2 |
| 97 | 1+(−3.07+5.33i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.59711143097059488862479245753, −10.67656312024268872347107309141, −10.21500934750857306971733249691, −9.014858861002340517890092113886, −7.56783690411986937432772721642, −6.75976730989470201309205422865, −6.12209682195960143587886093672, −5.20062893242564309661969009716, −3.63700910620987928193226476679, −2.37000302787835444948396067627,
0.959667105738758616862177625672, 2.33604205950120538196913605650, 4.36973121353154548142364689998, 5.07283175500246624142591699511, 5.81810472280475581351845273222, 7.12065351943739252519272864986, 8.825684818222730411797383662559, 9.254709291459052360748344957121, 10.14872279371118090352264822472, 11.25645018488591354390139217763