Properties

Label 366.2.e.d
Level 366366
Weight 22
Character orbit 366.e
Analytic conductor 2.9232.923
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [366,2,Mod(13,366)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(366, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("366.13"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 366=2361 366 = 2 \cdot 3 \cdot 61
Weight: k k == 2 2
Character orbit: [χ][\chi] == 366.e (of order 33, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,3,-6,-3,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.922524713982.92252471398
Analytic rank: 00
Dimension: 66
Relative dimension: 33 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: 6.0.65370672.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x6x5+10x413x3+92x299x+121 x^{6} - x^{5} + 10x^{4} - 13x^{3} + 92x^{2} - 99x + 121 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β4+1)q2q3+β4q4+(β5β4β3+1)q5+(β41)q6+(β4β2+β1+1)q7q8+q9++(β2+1)q99+O(q100) q + (\beta_{4} + 1) q^{2} - q^{3} + \beta_{4} q^{4} + (\beta_{5} - \beta_{4} - \beta_{3} + \cdots - 1) q^{5} + ( - \beta_{4} - 1) q^{6} + (\beta_{4} - \beta_{2} + \beta_1 + 1) q^{7} - q^{8} + q^{9}+ \cdots + ( - \beta_{2} + 1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+3q26q33q4q53q6+2q76q8+6q9+q10+4q11+3q122q132q14+q153q1612q17+3q18+6q19+2q20++4q99+O(q100) 6 q + 3 q^{2} - 6 q^{3} - 3 q^{4} - q^{5} - 3 q^{6} + 2 q^{7} - 6 q^{8} + 6 q^{9} + q^{10} + 4 q^{11} + 3 q^{12} - 2 q^{13} - 2 q^{14} + q^{15} - 3 q^{16} - 12 q^{17} + 3 q^{18} + 6 q^{19} + 2 q^{20}+ \cdots + 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x6x5+10x413x3+92x299x+121 x^{6} - x^{5} + 10x^{4} - 13x^{3} + 92x^{2} - 99x + 121 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν5+10ν4100ν3+92ν299ν+990)/821 ( -\nu^{5} + 10\nu^{4} - 100\nu^{3} + 92\nu^{2} - 99\nu + 990 ) / 821 Copy content Toggle raw display
β3\beta_{3}== (8ν580ν421ν3736ν2+792ν4636)/821 ( 8\nu^{5} - 80\nu^{4} - 21\nu^{3} - 736\nu^{2} + 792\nu - 4636 ) / 821 Copy content Toggle raw display
β4\beta_{4}== (90ν5+79ν4790ν3+70ν27268ν1210)/9031 ( -90\nu^{5} + 79\nu^{4} - 790\nu^{3} + 70\nu^{2} - 7268\nu - 1210 ) / 9031 Copy content Toggle raw display
β5\beta_{5}== (531ν5437ν44661ν3+413ν232044ν7139)/9031 ( -531\nu^{5} - 437\nu^{4} - 4661\nu^{3} + 413\nu^{2} - 32044\nu - 7139 ) / 9031 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β57β4β3+β2β17 \beta_{5} - 7\beta_{4} - \beta_{3} + \beta_{2} - \beta _1 - 7 Copy content Toggle raw display
ν3\nu^{3}== β38β2+4 -\beta_{3} - 8\beta_{2} + 4 Copy content Toggle raw display
ν4\nu^{4}== 10β5+59β4+12β1 -10\beta_{5} + 59\beta_{4} + 12\beta_1 Copy content Toggle raw display
ν5\nu^{5}== 8β554β4+8β3+71β271β154 -8\beta_{5} - 54\beta_{4} + 8\beta_{3} + 71\beta_{2} - 71\beta _1 - 54 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/366Z)×\left(\mathbb{Z}/366\mathbb{Z}\right)^\times.

nn 245245 307307
χ(n)\chi(n) 11 β4\beta_{4}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
13.1
−1.54030 2.66788i
1.40489 + 2.43335i
0.635409 + 1.10056i
−1.54030 + 2.66788i
1.40489 2.43335i
0.635409 1.10056i
0.500000 0.866025i −1.00000 −0.500000 0.866025i −1.74506 + 3.02254i −0.500000 + 0.866025i 2.04030 3.53391i −1.00000 1.00000 1.74506 + 3.02254i
13.2 0.500000 0.866025i −1.00000 −0.500000 0.866025i −0.947448 + 1.64103i −0.500000 + 0.866025i −0.904893 + 1.56732i −1.00000 1.00000 0.947448 + 1.64103i
13.3 0.500000 0.866025i −1.00000 −0.500000 0.866025i 2.19251 3.79754i −0.500000 + 0.866025i −0.135409 + 0.234536i −1.00000 1.00000 −2.19251 3.79754i
169.1 0.500000 + 0.866025i −1.00000 −0.500000 + 0.866025i −1.74506 3.02254i −0.500000 0.866025i 2.04030 + 3.53391i −1.00000 1.00000 1.74506 3.02254i
169.2 0.500000 + 0.866025i −1.00000 −0.500000 + 0.866025i −0.947448 1.64103i −0.500000 0.866025i −0.904893 1.56732i −1.00000 1.00000 0.947448 1.64103i
169.3 0.500000 + 0.866025i −1.00000 −0.500000 + 0.866025i 2.19251 + 3.79754i −0.500000 0.866025i −0.135409 0.234536i −1.00000 1.00000 −2.19251 + 3.79754i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 13.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
61.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 366.2.e.d 6
3.b odd 2 1 1098.2.f.f 6
61.c even 3 1 inner 366.2.e.d 6
183.k odd 6 1 1098.2.f.f 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
366.2.e.d 6 1.a even 1 1 trivial
366.2.e.d 6 61.c even 3 1 inner
1098.2.f.f 6 3.b odd 2 1
1098.2.f.f 6 183.k odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T56+T55+18T54+41T53+318T52+493T5+841 T_{5}^{6} + T_{5}^{5} + 18T_{5}^{4} + 41T_{5}^{3} + 318T_{5}^{2} + 493T_{5} + 841 acting on S2new(366,[χ])S_{2}^{\mathrm{new}}(366, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2T+1)3 (T^{2} - T + 1)^{3} Copy content Toggle raw display
33 (T+1)6 (T + 1)^{6} Copy content Toggle raw display
55 T6+T5++841 T^{6} + T^{5} + \cdots + 841 Copy content Toggle raw display
77 T62T5++4 T^{6} - 2 T^{5} + \cdots + 4 Copy content Toggle raw display
1111 (T32T28T2)2 (T^{3} - 2 T^{2} - 8 T - 2)^{2} Copy content Toggle raw display
1313 T6+2T5++7744 T^{6} + 2 T^{5} + \cdots + 7744 Copy content Toggle raw display
1717 T6+12T5++17424 T^{6} + 12 T^{5} + \cdots + 17424 Copy content Toggle raw display
1919 (T22T+4)3 (T^{2} - 2 T + 4)^{3} Copy content Toggle raw display
2323 (T34T210T+22)2 (T^{3} - 4 T^{2} - 10 T + 22)^{2} Copy content Toggle raw display
2929 T67T5++121 T^{6} - 7 T^{5} + \cdots + 121 Copy content Toggle raw display
3131 (T22T+4)3 (T^{2} - 2 T + 4)^{3} Copy content Toggle raw display
3737 (T3+7T2+T27)2 (T^{3} + 7 T^{2} + T - 27)^{2} Copy content Toggle raw display
4141 (T311T2+23)2 (T^{3} - 11 T^{2} + \cdots - 23)^{2} Copy content Toggle raw display
4343 T612T5++14884 T^{6} - 12 T^{5} + \cdots + 14884 Copy content Toggle raw display
4747 T6+10T5++948676 T^{6} + 10 T^{5} + \cdots + 948676 Copy content Toggle raw display
5353 (T3+11T2+723)2 (T^{3} + 11 T^{2} + \cdots - 723)^{2} Copy content Toggle raw display
5959 T6+4T5++9216 T^{6} + 4 T^{5} + \cdots + 9216 Copy content Toggle raw display
6161 T69T5++226981 T^{6} - 9 T^{5} + \cdots + 226981 Copy content Toggle raw display
6767 T6+2T5++36 T^{6} + 2 T^{5} + \cdots + 36 Copy content Toggle raw display
7171 T610T5++576 T^{6} - 10 T^{5} + \cdots + 576 Copy content Toggle raw display
7373 (T25T+25)3 (T^{2} - 5 T + 25)^{3} Copy content Toggle raw display
7979 T6+6T5++627264 T^{6} + 6 T^{5} + \cdots + 627264 Copy content Toggle raw display
8383 T6+14T5++4356 T^{6} + 14 T^{5} + \cdots + 4356 Copy content Toggle raw display
8989 (T313T2++3309)2 (T^{3} - 13 T^{2} + \cdots + 3309)^{2} Copy content Toggle raw display
9797 T627T5++259081 T^{6} - 27 T^{5} + \cdots + 259081 Copy content Toggle raw display
show more
show less