gp: [N,k,chi] = [366,2,Mod(13,366)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(366, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 4]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("366.13");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [6,3,-6,-3,-1]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 5 1,\beta_1,\ldots,\beta_{5} 1 , β 1 , … , β 5 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 6 − x 5 + 10 x 4 − 13 x 3 + 92 x 2 − 99 x + 121 x^{6} - x^{5} + 10x^{4} - 13x^{3} + 92x^{2} - 99x + 121 x 6 − x 5 + 1 0 x 4 − 1 3 x 3 + 9 2 x 2 − 9 9 x + 1 2 1
x^6 - x^5 + 10*x^4 - 13*x^3 + 92*x^2 - 99*x + 121
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( − ν 5 + 10 ν 4 − 100 ν 3 + 92 ν 2 − 99 ν + 990 ) / 821 ( -\nu^{5} + 10\nu^{4} - 100\nu^{3} + 92\nu^{2} - 99\nu + 990 ) / 821 ( − ν 5 + 1 0 ν 4 − 1 0 0 ν 3 + 9 2 ν 2 − 9 9 ν + 9 9 0 ) / 8 2 1
(-v^5 + 10*v^4 - 100*v^3 + 92*v^2 - 99*v + 990) / 821
β 3 \beta_{3} β 3 = = =
( 8 ν 5 − 80 ν 4 − 21 ν 3 − 736 ν 2 + 792 ν − 4636 ) / 821 ( 8\nu^{5} - 80\nu^{4} - 21\nu^{3} - 736\nu^{2} + 792\nu - 4636 ) / 821 ( 8 ν 5 − 8 0 ν 4 − 2 1 ν 3 − 7 3 6 ν 2 + 7 9 2 ν − 4 6 3 6 ) / 8 2 1
(8*v^5 - 80*v^4 - 21*v^3 - 736*v^2 + 792*v - 4636) / 821
β 4 \beta_{4} β 4 = = =
( − 90 ν 5 + 79 ν 4 − 790 ν 3 + 70 ν 2 − 7268 ν − 1210 ) / 9031 ( -90\nu^{5} + 79\nu^{4} - 790\nu^{3} + 70\nu^{2} - 7268\nu - 1210 ) / 9031 ( − 9 0 ν 5 + 7 9 ν 4 − 7 9 0 ν 3 + 7 0 ν 2 − 7 2 6 8 ν − 1 2 1 0 ) / 9 0 3 1
(-90*v^5 + 79*v^4 - 790*v^3 + 70*v^2 - 7268*v - 1210) / 9031
β 5 \beta_{5} β 5 = = =
( − 531 ν 5 − 437 ν 4 − 4661 ν 3 + 413 ν 2 − 32044 ν − 7139 ) / 9031 ( -531\nu^{5} - 437\nu^{4} - 4661\nu^{3} + 413\nu^{2} - 32044\nu - 7139 ) / 9031 ( − 5 3 1 ν 5 − 4 3 7 ν 4 − 4 6 6 1 ν 3 + 4 1 3 ν 2 − 3 2 0 4 4 ν − 7 1 3 9 ) / 9 0 3 1
(-531*v^5 - 437*v^4 - 4661*v^3 + 413*v^2 - 32044*v - 7139) / 9031
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
β 5 − 7 β 4 − β 3 + β 2 − β 1 − 7 \beta_{5} - 7\beta_{4} - \beta_{3} + \beta_{2} - \beta _1 - 7 β 5 − 7 β 4 − β 3 + β 2 − β 1 − 7
b5 - 7*b4 - b3 + b2 - b1 - 7
ν 3 \nu^{3} ν 3 = = =
− β 3 − 8 β 2 + 4 -\beta_{3} - 8\beta_{2} + 4 − β 3 − 8 β 2 + 4
-b3 - 8*b2 + 4
ν 4 \nu^{4} ν 4 = = =
− 10 β 5 + 59 β 4 + 12 β 1 -10\beta_{5} + 59\beta_{4} + 12\beta_1 − 1 0 β 5 + 5 9 β 4 + 1 2 β 1
-10*b5 + 59*b4 + 12*b1
ν 5 \nu^{5} ν 5 = = =
− 8 β 5 − 54 β 4 + 8 β 3 + 71 β 2 − 71 β 1 − 54 -8\beta_{5} - 54\beta_{4} + 8\beta_{3} + 71\beta_{2} - 71\beta _1 - 54 − 8 β 5 − 5 4 β 4 + 8 β 3 + 7 1 β 2 − 7 1 β 1 − 5 4
-8*b5 - 54*b4 + 8*b3 + 71*b2 - 71*b1 - 54
Character values
We give the values of χ \chi χ on generators for ( Z / 366 Z ) × \left(\mathbb{Z}/366\mathbb{Z}\right)^\times ( Z / 3 6 6 Z ) × .
n n n
245 245 2 4 5
307 307 3 0 7
χ ( n ) \chi(n) χ ( n )
1 1 1
β 4 \beta_{4} β 4
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 6 + T 5 5 + 18 T 5 4 + 41 T 5 3 + 318 T 5 2 + 493 T 5 + 841 T_{5}^{6} + T_{5}^{5} + 18T_{5}^{4} + 41T_{5}^{3} + 318T_{5}^{2} + 493T_{5} + 841 T 5 6 + T 5 5 + 1 8 T 5 4 + 4 1 T 5 3 + 3 1 8 T 5 2 + 4 9 3 T 5 + 8 4 1
T5^6 + T5^5 + 18*T5^4 + 41*T5^3 + 318*T5^2 + 493*T5 + 841
acting on S 2 n e w ( 366 , [ χ ] ) S_{2}^{\mathrm{new}}(366, [\chi]) S 2 n e w ( 3 6 6 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 2 − T + 1 ) 3 (T^{2} - T + 1)^{3} ( T 2 − T + 1 ) 3
(T^2 - T + 1)^3
3 3 3
( T + 1 ) 6 (T + 1)^{6} ( T + 1 ) 6
(T + 1)^6
5 5 5
T 6 + T 5 + ⋯ + 841 T^{6} + T^{5} + \cdots + 841 T 6 + T 5 + ⋯ + 8 4 1
T^6 + T^5 + 18*T^4 + 41*T^3 + 318*T^2 + 493*T + 841
7 7 7
T 6 − 2 T 5 + ⋯ + 4 T^{6} - 2 T^{5} + \cdots + 4 T 6 − 2 T 5 + ⋯ + 4
T^6 - 2*T^5 + 12*T^4 + 20*T^3 + 60*T^2 + 16*T + 4
11 11 1 1
( T 3 − 2 T 2 − 8 T − 2 ) 2 (T^{3} - 2 T^{2} - 8 T - 2)^{2} ( T 3 − 2 T 2 − 8 T − 2 ) 2
(T^3 - 2*T^2 - 8*T - 2)^2
13 13 1 3
T 6 + 2 T 5 + ⋯ + 7744 T^{6} + 2 T^{5} + \cdots + 7744 T 6 + 2 T 5 + ⋯ + 7 7 4 4
T^6 + 2*T^5 + 40*T^4 + 104*T^3 + 1472*T^2 + 3168*T + 7744
17 17 1 7
T 6 + 12 T 5 + ⋯ + 17424 T^{6} + 12 T^{5} + \cdots + 17424 T 6 + 1 2 T 5 + ⋯ + 1 7 4 2 4
T^6 + 12*T^5 + 128*T^4 + 456*T^3 + 1840*T^2 - 2112*T + 17424
19 19 1 9
( T 2 − 2 T + 4 ) 3 (T^{2} - 2 T + 4)^{3} ( T 2 − 2 T + 4 ) 3
(T^2 - 2*T + 4)^3
23 23 2 3
( T 3 − 4 T 2 − 10 T + 22 ) 2 (T^{3} - 4 T^{2} - 10 T + 22)^{2} ( T 3 − 4 T 2 − 1 0 T + 2 2 ) 2
(T^3 - 4*T^2 - 10*T + 22)^2
29 29 2 9
T 6 − 7 T 5 + ⋯ + 121 T^{6} - 7 T^{5} + \cdots + 121 T 6 − 7 T 5 + ⋯ + 1 2 1
T^6 - 7*T^5 + 70*T^4 + 125*T^3 + 518*T^2 - 231*T + 121
31 31 3 1
( T 2 − 2 T + 4 ) 3 (T^{2} - 2 T + 4)^{3} ( T 2 − 2 T + 4 ) 3
(T^2 - 2*T + 4)^3
37 37 3 7
( T 3 + 7 T 2 + T − 27 ) 2 (T^{3} + 7 T^{2} + T - 27)^{2} ( T 3 + 7 T 2 + T − 2 7 ) 2
(T^3 + 7*T^2 + T - 27)^2
41 41 4 1
( T 3 − 11 T 2 + ⋯ − 23 ) 2 (T^{3} - 11 T^{2} + \cdots - 23)^{2} ( T 3 − 1 1 T 2 + ⋯ − 2 3 ) 2
(T^3 - 11*T^2 + 31*T - 23)^2
43 43 4 3
T 6 − 12 T 5 + ⋯ + 14884 T^{6} - 12 T^{5} + \cdots + 14884 T 6 − 1 2 T 5 + ⋯ + 1 4 8 8 4
T^6 - 12*T^5 + 134*T^4 - 364*T^3 + 1564*T^2 + 1220*T + 14884
47 47 4 7
T 6 + 10 T 5 + ⋯ + 948676 T^{6} + 10 T^{5} + \cdots + 948676 T 6 + 1 0 T 5 + ⋯ + 9 4 8 6 7 6
T^6 + 10*T^5 + 198*T^4 + 968*T^3 + 19344*T^2 + 95452*T + 948676
53 53 5 3
( T 3 + 11 T 2 + ⋯ − 723 ) 2 (T^{3} + 11 T^{2} + \cdots - 723)^{2} ( T 3 + 1 1 T 2 + ⋯ − 7 2 3 ) 2
(T^3 + 11*T^2 - 85*T - 723)^2
59 59 5 9
T 6 + 4 T 5 + ⋯ + 9216 T^{6} + 4 T^{5} + \cdots + 9216 T 6 + 4 T 5 + ⋯ + 9 2 1 6
T^6 + 4*T^5 + 80*T^4 - 448*T^3 + 3712*T^2 - 6144*T + 9216
61 61 6 1
T 6 − 9 T 5 + ⋯ + 226981 T^{6} - 9 T^{5} + \cdots + 226981 T 6 − 9 T 5 + ⋯ + 2 2 6 9 8 1
T^6 - 9*T^5 + 72*T^4 - 605*T^3 + 4392*T^2 - 33489*T + 226981
67 67 6 7
T 6 + 2 T 5 + ⋯ + 36 T^{6} + 2 T^{5} + \cdots + 36 T 6 + 2 T 5 + ⋯ + 3 6
T^6 + 2*T^5 + 18*T^4 - 16*T^3 + 208*T^2 + 84*T + 36
71 71 7 1
T 6 − 10 T 5 + ⋯ + 576 T^{6} - 10 T^{5} + \cdots + 576 T 6 − 1 0 T 5 + ⋯ + 5 7 6
T^6 - 10*T^5 + 104*T^4 - 8*T^3 + 256*T^2 - 96*T + 576
73 73 7 3
( T 2 − 5 T + 25 ) 3 (T^{2} - 5 T + 25)^{3} ( T 2 − 5 T + 2 5 ) 3
(T^2 - 5*T + 25)^3
79 79 7 9
T 6 + 6 T 5 + ⋯ + 627264 T^{6} + 6 T^{5} + \cdots + 627264 T 6 + 6 T 5 + ⋯ + 6 2 7 2 6 4
T^6 + 6*T^5 + 152*T^4 + 888*T^3 + 18208*T^2 + 91872*T + 627264
83 83 8 3
T 6 + 14 T 5 + ⋯ + 4356 T^{6} + 14 T^{5} + \cdots + 4356 T 6 + 1 4 T 5 + ⋯ + 4 3 5 6
T^6 + 14*T^5 + 140*T^4 + 652*T^3 + 2212*T^2 + 3696*T + 4356
89 89 8 9
( T 3 − 13 T 2 + ⋯ + 3309 ) 2 (T^{3} - 13 T^{2} + \cdots + 3309)^{2} ( T 3 − 1 3 T 2 + ⋯ + 3 3 0 9 ) 2
(T^3 - 13*T^2 - 251*T + 3309)^2
97 97 9 7
T 6 − 27 T 5 + ⋯ + 259081 T^{6} - 27 T^{5} + \cdots + 259081 T 6 − 2 7 T 5 + ⋯ + 2 5 9 0 8 1
T^6 - 27*T^5 + 518*T^4 - 4679*T^3 + 30778*T^2 - 107399*T + 259081
show more
show less