Properties

Label 366.2.e.d
Level $366$
Weight $2$
Character orbit 366.e
Analytic conductor $2.923$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [366,2,Mod(13,366)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(366, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("366.13");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 366 = 2 \cdot 3 \cdot 61 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 366.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.92252471398\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.65370672.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 10x^{4} - 13x^{3} + 92x^{2} - 99x + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{4} + 1) q^{2} - q^{3} + \beta_{4} q^{4} + (\beta_{5} - \beta_{4} - \beta_{3} + \cdots - 1) q^{5} + ( - \beta_{4} - 1) q^{6} + (\beta_{4} - \beta_{2} + \beta_1 + 1) q^{7} - q^{8} + q^{9}+ \cdots + ( - \beta_{2} + 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{2} - 6 q^{3} - 3 q^{4} - q^{5} - 3 q^{6} + 2 q^{7} - 6 q^{8} + 6 q^{9} + q^{10} + 4 q^{11} + 3 q^{12} - 2 q^{13} - 2 q^{14} + q^{15} - 3 q^{16} - 12 q^{17} + 3 q^{18} + 6 q^{19} + 2 q^{20}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} + 10x^{4} - 13x^{3} + 92x^{2} - 99x + 121 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{5} + 10\nu^{4} - 100\nu^{3} + 92\nu^{2} - 99\nu + 990 ) / 821 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 8\nu^{5} - 80\nu^{4} - 21\nu^{3} - 736\nu^{2} + 792\nu - 4636 ) / 821 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -90\nu^{5} + 79\nu^{4} - 790\nu^{3} + 70\nu^{2} - 7268\nu - 1210 ) / 9031 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -531\nu^{5} - 437\nu^{4} - 4661\nu^{3} + 413\nu^{2} - 32044\nu - 7139 ) / 9031 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} - 7\beta_{4} - \beta_{3} + \beta_{2} - \beta _1 - 7 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{3} - 8\beta_{2} + 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -10\beta_{5} + 59\beta_{4} + 12\beta_1 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -8\beta_{5} - 54\beta_{4} + 8\beta_{3} + 71\beta_{2} - 71\beta _1 - 54 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/366\mathbb{Z}\right)^\times\).

\(n\) \(245\) \(307\)
\(\chi(n)\) \(1\) \(\beta_{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
13.1
−1.54030 2.66788i
1.40489 + 2.43335i
0.635409 + 1.10056i
−1.54030 + 2.66788i
1.40489 2.43335i
0.635409 1.10056i
0.500000 0.866025i −1.00000 −0.500000 0.866025i −1.74506 + 3.02254i −0.500000 + 0.866025i 2.04030 3.53391i −1.00000 1.00000 1.74506 + 3.02254i
13.2 0.500000 0.866025i −1.00000 −0.500000 0.866025i −0.947448 + 1.64103i −0.500000 + 0.866025i −0.904893 + 1.56732i −1.00000 1.00000 0.947448 + 1.64103i
13.3 0.500000 0.866025i −1.00000 −0.500000 0.866025i 2.19251 3.79754i −0.500000 + 0.866025i −0.135409 + 0.234536i −1.00000 1.00000 −2.19251 3.79754i
169.1 0.500000 + 0.866025i −1.00000 −0.500000 + 0.866025i −1.74506 3.02254i −0.500000 0.866025i 2.04030 + 3.53391i −1.00000 1.00000 1.74506 3.02254i
169.2 0.500000 + 0.866025i −1.00000 −0.500000 + 0.866025i −0.947448 1.64103i −0.500000 0.866025i −0.904893 1.56732i −1.00000 1.00000 0.947448 1.64103i
169.3 0.500000 + 0.866025i −1.00000 −0.500000 + 0.866025i 2.19251 + 3.79754i −0.500000 0.866025i −0.135409 0.234536i −1.00000 1.00000 −2.19251 + 3.79754i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 13.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
61.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 366.2.e.d 6
3.b odd 2 1 1098.2.f.f 6
61.c even 3 1 inner 366.2.e.d 6
183.k odd 6 1 1098.2.f.f 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
366.2.e.d 6 1.a even 1 1 trivial
366.2.e.d 6 61.c even 3 1 inner
1098.2.f.f 6 3.b odd 2 1
1098.2.f.f 6 183.k odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{6} + T_{5}^{5} + 18T_{5}^{4} + 41T_{5}^{3} + 318T_{5}^{2} + 493T_{5} + 841 \) acting on \(S_{2}^{\mathrm{new}}(366, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - T + 1)^{3} \) Copy content Toggle raw display
$3$ \( (T + 1)^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + T^{5} + \cdots + 841 \) Copy content Toggle raw display
$7$ \( T^{6} - 2 T^{5} + \cdots + 4 \) Copy content Toggle raw display
$11$ \( (T^{3} - 2 T^{2} - 8 T - 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} + 2 T^{5} + \cdots + 7744 \) Copy content Toggle raw display
$17$ \( T^{6} + 12 T^{5} + \cdots + 17424 \) Copy content Toggle raw display
$19$ \( (T^{2} - 2 T + 4)^{3} \) Copy content Toggle raw display
$23$ \( (T^{3} - 4 T^{2} - 10 T + 22)^{2} \) Copy content Toggle raw display
$29$ \( T^{6} - 7 T^{5} + \cdots + 121 \) Copy content Toggle raw display
$31$ \( (T^{2} - 2 T + 4)^{3} \) Copy content Toggle raw display
$37$ \( (T^{3} + 7 T^{2} + T - 27)^{2} \) Copy content Toggle raw display
$41$ \( (T^{3} - 11 T^{2} + \cdots - 23)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} - 12 T^{5} + \cdots + 14884 \) Copy content Toggle raw display
$47$ \( T^{6} + 10 T^{5} + \cdots + 948676 \) Copy content Toggle raw display
$53$ \( (T^{3} + 11 T^{2} + \cdots - 723)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + 4 T^{5} + \cdots + 9216 \) Copy content Toggle raw display
$61$ \( T^{6} - 9 T^{5} + \cdots + 226981 \) Copy content Toggle raw display
$67$ \( T^{6} + 2 T^{5} + \cdots + 36 \) Copy content Toggle raw display
$71$ \( T^{6} - 10 T^{5} + \cdots + 576 \) Copy content Toggle raw display
$73$ \( (T^{2} - 5 T + 25)^{3} \) Copy content Toggle raw display
$79$ \( T^{6} + 6 T^{5} + \cdots + 627264 \) Copy content Toggle raw display
$83$ \( T^{6} + 14 T^{5} + \cdots + 4356 \) Copy content Toggle raw display
$89$ \( (T^{3} - 13 T^{2} + \cdots + 3309)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} - 27 T^{5} + \cdots + 259081 \) Copy content Toggle raw display
show more
show less