Properties

Label 2-366-61.57-c1-0-5
Degree $2$
Conductor $366$
Sign $0.862 - 0.505i$
Analytic cond. $2.92252$
Root an. cond. $1.70953$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.104 + 0.994i)2-s + (0.809 + 0.587i)3-s + (−0.978 − 0.207i)4-s + (2.23 − 2.48i)5-s + (−0.669 + 0.743i)6-s + (0.0234 + 0.0104i)7-s + (0.309 − 0.951i)8-s + (0.309 + 0.951i)9-s + (2.23 + 2.48i)10-s + 2.03·11-s + (−0.669 − 0.743i)12-s + (−1.07 − 1.86i)13-s + (−0.0128 + 0.0222i)14-s + (3.27 − 0.695i)15-s + (0.913 + 0.406i)16-s + (0.146 + 0.0310i)17-s + ⋯
L(s)  = 1  + (−0.0739 + 0.703i)2-s + (0.467 + 0.339i)3-s + (−0.489 − 0.103i)4-s + (1.00 − 1.11i)5-s + (−0.273 + 0.303i)6-s + (0.00885 + 0.00394i)7-s + (0.109 − 0.336i)8-s + (0.103 + 0.317i)9-s + (0.708 + 0.786i)10-s + 0.612·11-s + (−0.193 − 0.214i)12-s + (−0.297 − 0.515i)13-s + (−0.00342 + 0.00593i)14-s + (0.845 − 0.179i)15-s + (0.228 + 0.101i)16-s + (0.0354 + 0.00754i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 366 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.862 - 0.505i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 366 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.862 - 0.505i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(366\)    =    \(2 \cdot 3 \cdot 61\)
Sign: $0.862 - 0.505i$
Analytic conductor: \(2.92252\)
Root analytic conductor: \(1.70953\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{366} (301, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 366,\ (\ :1/2),\ 0.862 - 0.505i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.64406 + 0.446584i\)
\(L(\frac12)\) \(\approx\) \(1.64406 + 0.446584i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.104 - 0.994i)T \)
3 \( 1 + (-0.809 - 0.587i)T \)
61 \( 1 + (-5.74 + 5.29i)T \)
good5 \( 1 + (-2.23 + 2.48i)T + (-0.522 - 4.97i)T^{2} \)
7 \( 1 + (-0.0234 - 0.0104i)T + (4.68 + 5.20i)T^{2} \)
11 \( 1 - 2.03T + 11T^{2} \)
13 \( 1 + (1.07 + 1.86i)T + (-6.5 + 11.2i)T^{2} \)
17 \( 1 + (-0.146 - 0.0310i)T + (15.5 + 6.91i)T^{2} \)
19 \( 1 + (-5.19 + 2.31i)T + (12.7 - 14.1i)T^{2} \)
23 \( 1 + (-0.999 - 3.07i)T + (-18.6 + 13.5i)T^{2} \)
29 \( 1 + (5.09 - 8.82i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + (0.217 + 2.06i)T + (-30.3 + 6.44i)T^{2} \)
37 \( 1 + (5.06 - 3.67i)T + (11.4 - 35.1i)T^{2} \)
41 \( 1 + (6.25 - 4.54i)T + (12.6 - 38.9i)T^{2} \)
43 \( 1 + (-2.29 + 0.488i)T + (39.2 - 17.4i)T^{2} \)
47 \( 1 + (2.64 - 4.57i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (-0.423 + 1.30i)T + (-42.8 - 31.1i)T^{2} \)
59 \( 1 + (-0.762 + 7.25i)T + (-57.7 - 12.2i)T^{2} \)
67 \( 1 + (0.0360 - 0.0400i)T + (-7.00 - 66.6i)T^{2} \)
71 \( 1 + (-4.81 - 5.35i)T + (-7.42 + 70.6i)T^{2} \)
73 \( 1 + (8.45 + 9.38i)T + (-7.63 + 72.6i)T^{2} \)
79 \( 1 + (3.16 - 0.673i)T + (72.1 - 32.1i)T^{2} \)
83 \( 1 + (-0.189 + 1.80i)T + (-81.1 - 17.2i)T^{2} \)
89 \( 1 + (1.47 + 1.07i)T + (27.5 + 84.6i)T^{2} \)
97 \( 1 + (0.386 + 3.68i)T + (-94.8 + 20.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.51720069322471679203509967025, −10.12454846591684038028120434434, −9.399454293258600952718828486151, −8.893770048423370271327185596492, −7.86050698657516831952112658350, −6.73831401802124166557682403140, −5.40588937619278919296731278905, −4.95883374134814166134935216789, −3.40120435386124526056230049562, −1.48083681670083325327393519056, 1.74463120661075674832189865390, 2.76375428547576889094749725812, 3.90060466279429175609632394134, 5.56326218048163428385965090671, 6.63992964264375496606299759273, 7.51639694672859193703509698522, 8.839825435561582858373084007105, 9.690382331793438811733605605154, 10.27175737015357921344130603884, 11.36034824172670422902432348012

Graph of the $Z$-function along the critical line