Properties

Label 366.2.q.b
Level $366$
Weight $2$
Character orbit 366.q
Analytic conductor $2.923$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [366,2,Mod(25,366)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(366, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([0, 22]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("366.25");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 366 = 2 \cdot 3 \cdot 61 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 366.q (of order \(15\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.92252471398\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(2\) over \(\Q(\zeta_{15})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 20x^{14} + 154x^{12} + 580x^{10} + 1131x^{8} + 1115x^{6} + 484x^{4} + 55x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{13} + \beta_{11} - \beta_{10} + \cdots + 1) q^{2} + ( - \beta_{15} - \beta_{13} + \beta_{11} + \cdots + 1) q^{3} + ( - \beta_{8} - \beta_{7}) q^{4} + (\beta_{15} - \beta_{14} + \cdots + \beta_1) q^{5}+ \cdots + (\beta_{15} + \beta_{14} + \cdots - \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{2} + 4 q^{3} + 2 q^{4} + 7 q^{5} - 2 q^{6} + 12 q^{7} - 4 q^{8} - 4 q^{9} + 7 q^{10} + 14 q^{11} - 2 q^{12} - 4 q^{13} - 8 q^{14} + 8 q^{15} + 2 q^{16} - 20 q^{17} + 2 q^{18} + q^{19} + q^{20}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} + 20x^{14} + 154x^{12} + 580x^{10} + 1131x^{8} + 1115x^{6} + 484x^{4} + 55x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 405 \nu^{14} - 7843 \nu^{12} - 57865 \nu^{10} - 206167 \nu^{8} - 374583 \nu^{6} - 329968 \nu^{4} + \cdots - 4042 ) / 14702 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 405 \nu^{14} - 7843 \nu^{12} - 57865 \nu^{10} - 206167 \nu^{8} - 374583 \nu^{6} - 329968 \nu^{4} + \cdots - 4042 ) / 14702 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 329 \nu^{15} + 417 \nu^{14} + 8513 \nu^{13} + 8511 \nu^{12} + 87210 \nu^{11} + 66386 \nu^{10} + \cdots - 7981 ) / 14702 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 449 \nu^{15} + 1528 \nu^{14} - 7842 \nu^{13} + 28701 \nu^{12} - 47453 \nu^{11} + 200437 \nu^{10} + \cdots + 2980 ) / 14702 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 1797 \nu^{15} + 417 \nu^{14} - 33874 \nu^{13} + 8511 \nu^{12} - 237691 \nu^{11} + 66386 \nu^{10} + \cdots - 630 ) / 14702 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 630 \nu^{15} + 1797 \nu^{14} - 13017 \nu^{13} + 33874 \nu^{12} - 105531 \nu^{11} + 237691 \nu^{10} + \cdots + 6064 ) / 14702 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 630 \nu^{15} + 1797 \nu^{14} + 13017 \nu^{13} + 33874 \nu^{12} + 105531 \nu^{11} + 237691 \nu^{10} + \cdots + 6064 ) / 14702 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 2350 \nu^{15} - 1348 \nu^{14} + 45055 \nu^{13} - 26032 \nu^{12} + 324688 \nu^{11} - 190238 \nu^{10} + \cdots - 21603 ) / 14702 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 630 \nu^{15} - 2202 \nu^{14} - 13017 \nu^{13} - 41717 \nu^{12} - 105531 \nu^{11} - 295556 \nu^{10} + \cdots + 19298 ) / 14702 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 2350 \nu^{15} + 1348 \nu^{14} + 45055 \nu^{13} + 26032 \nu^{12} + 324688 \nu^{11} + 190238 \nu^{10} + \cdots + 21603 ) / 14702 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 4042 \nu^{15} - 80435 \nu^{13} - 614625 \nu^{11} - 2286495 \nu^{9} - 4365335 \nu^{7} + \cdots - 7351 ) / 14702 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 1901 \nu^{15} + 3281 \nu^{14} - 37213 \nu^{13} + 62576 \nu^{12} - 277235 \nu^{11} + 448540 \nu^{10} + \cdots + 43327 ) / 14702 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 3637 \nu^{15} + 3041 \nu^{14} - 72592 \nu^{13} + 56567 \nu^{12} - 556760 \nu^{11} + 388385 \nu^{10} + \cdots - 2902 ) / 14702 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 4699 \nu^{15} + 449 \nu^{14} + 94955 \nu^{13} + 7842 \nu^{12} + 741166 \nu^{11} + 47453 \nu^{10} + \cdots - 30241 ) / 14702 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 3637 \nu^{15} - 3041 \nu^{14} - 72592 \nu^{13} - 56567 \nu^{12} - 556760 \nu^{11} - 388385 \nu^{10} + \cdots + 2902 ) / 14702 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_{2} - \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{9} + \beta_{7} - \beta _1 - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( - \beta_{15} - 2 \beta_{14} - \beta_{13} - 2 \beta_{11} - 2 \beta_{10} - \beta_{9} - \beta_{7} + \cdots - 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( - 2 \beta_{13} - \beta_{12} + \beta_{11} - \beta_{10} - 6 \beta_{9} - 2 \beta_{8} - 3 \beta_{7} + \cdots + 11 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 9 \beta_{15} + 16 \beta_{14} + 9 \beta_{13} + \beta_{12} + 14 \beta_{11} + 15 \beta_{10} + 8 \beta_{9} + \cdots + 7 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 18 \beta_{13} + 11 \beta_{12} - 9 \beta_{11} + 10 \beta_{10} + 38 \beta_{9} + 19 \beta_{8} + 9 \beta_{7} + \cdots - 70 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 68 \beta_{15} - 108 \beta_{14} - 68 \beta_{13} - 8 \beta_{12} - 81 \beta_{11} - 98 \beta_{10} + \cdots - 44 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 3 \beta_{15} - 127 \beta_{13} - 93 \beta_{12} + 65 \beta_{11} - 73 \beta_{10} - 241 \beta_{9} + \cdots + 453 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 479 \beta_{15} + 694 \beta_{14} + 479 \beta_{13} + 42 \beta_{12} + 451 \beta_{11} + 622 \beta_{10} + \cdots + 284 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( 44 \beta_{15} + 822 \beta_{13} + 710 \beta_{12} - 433 \beta_{11} + 475 \beta_{10} + 1518 \beta_{9} + \cdots - 2920 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( - 3255 \beta_{15} - 4382 \beta_{14} - 3255 \beta_{13} - 154 \beta_{12} - 2503 \beta_{11} - 3921 \beta_{10} + \cdots - 1888 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 428 \beta_{15} - 5118 \beta_{13} - 5143 \beta_{12} + 2773 \beta_{11} - 2927 \beta_{10} - 9523 \beta_{9} + \cdots + 18743 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 21693 \beta_{15} + 27512 \beta_{14} + 21693 \beta_{13} + 129 \beta_{12} + 13975 \beta_{11} + \cdots + 12742 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 3529 \beta_{15} + 31299 \beta_{13} + 36137 \beta_{12} - 17414 \beta_{11} + 17543 \beta_{10} + \cdots - 120090 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 143054 \beta_{15} - 172656 \beta_{14} - 143054 \beta_{13} + 4709 \beta_{12} - 78650 \beta_{11} + \cdots - 86365 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/366\mathbb{Z}\right)^\times\).

\(n\) \(245\) \(307\)
\(\chi(n)\) \(1\) \(-\beta_{7} - \beta_{8}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
25.1
2.34549i
1.11620i
0.149533i
2.55440i
1.88882i
1.38607i
1.88882i
1.38607i
2.34549i
1.11620i
0.367251i
1.04007i
0.367251i
1.04007i
0.149533i
2.55440i
0.669131 0.743145i −0.309017 0.951057i −0.104528 0.994522i −1.96825 0.876321i −0.913545 0.406737i −2.06019 + 0.437908i −0.809017 0.587785i −0.809017 + 0.587785i −1.96825 + 0.876321i
25.2 0.669131 0.743145i −0.309017 0.951057i −0.104528 0.994522i 0.936671 + 0.417033i −0.913545 0.406737i 3.80461 0.808694i −0.809017 0.587785i −0.809017 + 0.587785i 0.936671 0.417033i
73.1 0.913545 + 0.406737i 0.809017 0.587785i 0.669131 + 0.743145i −0.192518 + 0.0409209i 0.978148 0.207912i 0.0489251 0.465491i 0.309017 + 0.951057i 0.309017 0.951057i −0.192518 0.0409209i
73.2 0.913545 + 0.406737i 0.809017 0.587785i 0.669131 + 0.743145i 3.28870 0.699035i 0.978148 0.207912i −0.440618 + 4.19220i 0.309017 + 0.951057i 0.309017 0.951057i 3.28870 + 0.699035i
103.1 −0.978148 + 0.207912i −0.309017 + 0.951057i 0.913545 0.406737i −0.0507396 + 0.482755i 0.104528 0.994522i 3.08456 3.42575i −0.809017 + 0.587785i −0.809017 0.587785i −0.0507396 0.482755i
103.2 −0.978148 + 0.207912i −0.309017 + 0.951057i 0.913545 0.406737i 0.0372340 0.354258i 0.104528 0.994522i −0.710937 + 0.789575i −0.809017 + 0.587785i −0.809017 0.587785i 0.0372340 + 0.354258i
199.1 −0.978148 0.207912i −0.309017 0.951057i 0.913545 + 0.406737i −0.0507396 0.482755i 0.104528 + 0.994522i 3.08456 + 3.42575i −0.809017 0.587785i −0.809017 + 0.587785i −0.0507396 + 0.482755i
199.2 −0.978148 0.207912i −0.309017 0.951057i 0.913545 + 0.406737i 0.0372340 + 0.354258i 0.104528 + 0.994522i −0.710937 0.789575i −0.809017 0.587785i −0.809017 + 0.587785i 0.0372340 0.354258i
205.1 0.669131 + 0.743145i −0.309017 + 0.951057i −0.104528 + 0.994522i −1.96825 + 0.876321i −0.913545 + 0.406737i −2.06019 0.437908i −0.809017 + 0.587785i −0.809017 0.587785i −1.96825 0.876321i
205.2 0.669131 + 0.743145i −0.309017 + 0.951057i −0.104528 + 0.994522i 0.936671 0.417033i −0.913545 + 0.406737i 3.80461 + 0.808694i −0.809017 + 0.587785i −0.809017 0.587785i 0.936671 + 0.417033i
259.1 −0.104528 0.994522i 0.809017 0.587785i −0.978148 + 0.207912i −0.790872 0.878352i −0.669131 0.743145i 2.25023 1.00187i 0.309017 + 0.951057i 0.309017 0.951057i −0.790872 + 0.878352i
259.2 −0.104528 0.994522i 0.809017 0.587785i −0.978148 + 0.207912i 2.23978 + 2.48752i −0.669131 0.743145i 0.0234243 0.0104292i 0.309017 + 0.951057i 0.309017 0.951057i 2.23978 2.48752i
301.1 −0.104528 + 0.994522i 0.809017 + 0.587785i −0.978148 0.207912i −0.790872 + 0.878352i −0.669131 + 0.743145i 2.25023 + 1.00187i 0.309017 0.951057i 0.309017 + 0.951057i −0.790872 0.878352i
301.2 −0.104528 + 0.994522i 0.809017 + 0.587785i −0.978148 0.207912i 2.23978 2.48752i −0.669131 + 0.743145i 0.0234243 + 0.0104292i 0.309017 0.951057i 0.309017 + 0.951057i 2.23978 + 2.48752i
361.1 0.913545 0.406737i 0.809017 + 0.587785i 0.669131 0.743145i −0.192518 0.0409209i 0.978148 + 0.207912i 0.0489251 + 0.465491i 0.309017 0.951057i 0.309017 + 0.951057i −0.192518 + 0.0409209i
361.2 0.913545 0.406737i 0.809017 + 0.587785i 0.669131 0.743145i 3.28870 + 0.699035i 0.978148 + 0.207912i −0.440618 4.19220i 0.309017 0.951057i 0.309017 + 0.951057i 3.28870 0.699035i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 25.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
61.i even 15 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 366.2.q.b 16
61.i even 15 1 inner 366.2.q.b 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
366.2.q.b 16 1.a even 1 1 trivial
366.2.q.b 16 61.i even 15 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{16} - 7 T_{5}^{15} + 12 T_{5}^{14} + 31 T_{5}^{13} - 112 T_{5}^{12} - 121 T_{5}^{11} + 584 T_{5}^{10} + \cdots + 1 \) acting on \(S_{2}^{\mathrm{new}}(366, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{8} - T^{7} + T^{5} + \cdots + 1)^{2} \) Copy content Toggle raw display
$3$ \( (T^{4} - T^{3} + T^{2} + \cdots + 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{16} - 7 T^{15} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( T^{16} - 12 T^{15} + \cdots + 25 \) Copy content Toggle raw display
$11$ \( (T^{8} - 7 T^{7} - 3 T^{6} + \cdots + 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{16} + 4 T^{15} + \cdots + 41589601 \) Copy content Toggle raw display
$17$ \( T^{16} + 20 T^{15} + \cdots + 32761 \) Copy content Toggle raw display
$19$ \( T^{16} - T^{15} + \cdots + 130321 \) Copy content Toggle raw display
$23$ \( T^{16} - 6 T^{15} + \cdots + 32761 \) Copy content Toggle raw display
$29$ \( T^{16} + \cdots + 306915361 \) Copy content Toggle raw display
$31$ \( T^{16} + 5 T^{15} + \cdots + 58081 \) Copy content Toggle raw display
$37$ \( T^{16} + \cdots + 36097325691025 \) Copy content Toggle raw display
$41$ \( T^{16} + \cdots + 267025395025 \) Copy content Toggle raw display
$43$ \( T^{16} + \cdots + 1073283121 \) Copy content Toggle raw display
$47$ \( T^{16} + 13 T^{15} + \cdots + 326041 \) Copy content Toggle raw display
$53$ \( T^{16} + \cdots + 316448521 \) Copy content Toggle raw display
$59$ \( T^{16} + \cdots + 512671752121 \) Copy content Toggle raw display
$61$ \( T^{16} + \cdots + 191707312997281 \) Copy content Toggle raw display
$67$ \( T^{16} + \cdots + 9377791921 \) Copy content Toggle raw display
$71$ \( T^{16} + \cdots + 24\!\cdots\!25 \) Copy content Toggle raw display
$73$ \( T^{16} + \cdots + 428211630225625 \) Copy content Toggle raw display
$79$ \( T^{16} + \cdots + 2283979681 \) Copy content Toggle raw display
$83$ \( T^{16} + \cdots + 6182519641 \) Copy content Toggle raw display
$89$ \( T^{16} + \cdots + 893934321361 \) Copy content Toggle raw display
$97$ \( T^{16} + \cdots + 31413663121 \) Copy content Toggle raw display
show more
show less