L(s) = 1 | + (0.106 − 0.0488i)3-s + (−1.32 + 1.14i)5-s + (−2.88 − 1.85i)7-s + (−1.95 + 2.25i)9-s + (0.293 + 2.03i)11-s + (−3.33 + 2.14i)13-s + (−0.0852 + 0.186i)15-s + (0.842 + 2.87i)17-s + (−2.26 − 0.664i)19-s + (−0.399 − 0.0573i)21-s + (0.429 − 4.77i)23-s + (−0.277 + 1.92i)25-s + (−0.198 + 0.674i)27-s + (1.50 − 0.442i)29-s + (−7.01 − 3.20i)31-s + ⋯ |
L(s) = 1 | + (0.0617 − 0.0281i)3-s + (−0.590 + 0.511i)5-s + (−1.09 − 0.701i)7-s + (−0.651 + 0.752i)9-s + (0.0884 + 0.614i)11-s + (−0.924 + 0.594i)13-s + (−0.0220 + 0.0482i)15-s + (0.204 + 0.696i)17-s + (−0.518 − 0.152i)19-s + (−0.0870 − 0.0125i)21-s + (0.0894 − 0.995i)23-s + (−0.0554 + 0.385i)25-s + (−0.0381 + 0.129i)27-s + (0.280 − 0.0822i)29-s + (−1.26 − 0.575i)31-s + ⋯ |
Λ(s)=(=(368s/2ΓC(s)L(s)(−0.836−0.547i)Λ(2−s)
Λ(s)=(=(368s/2ΓC(s+1/2)L(s)(−0.836−0.547i)Λ(1−s)
Degree: |
2 |
Conductor: |
368
= 24⋅23
|
Sign: |
−0.836−0.547i
|
Analytic conductor: |
2.93849 |
Root analytic conductor: |
1.71420 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ368(15,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 368, ( :1/2), −0.836−0.547i)
|
Particular Values
L(1) |
≈ |
0.120163+0.403195i |
L(21) |
≈ |
0.120163+0.403195i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 23 | 1+(−0.429+4.77i)T |
good | 3 | 1+(−0.106+0.0488i)T+(1.96−2.26i)T2 |
| 5 | 1+(1.32−1.14i)T+(0.711−4.94i)T2 |
| 7 | 1+(2.88+1.85i)T+(2.90+6.36i)T2 |
| 11 | 1+(−0.293−2.03i)T+(−10.5+3.09i)T2 |
| 13 | 1+(3.33−2.14i)T+(5.40−11.8i)T2 |
| 17 | 1+(−0.842−2.87i)T+(−14.3+9.19i)T2 |
| 19 | 1+(2.26+0.664i)T+(15.9+10.2i)T2 |
| 29 | 1+(−1.50+0.442i)T+(24.3−15.6i)T2 |
| 31 | 1+(7.01+3.20i)T+(20.3+23.4i)T2 |
| 37 | 1+(−6.47−5.60i)T+(5.26+36.6i)T2 |
| 41 | 1+(7.67+8.85i)T+(−5.83+40.5i)T2 |
| 43 | 1+(−4.27−9.36i)T+(−28.1+32.4i)T2 |
| 47 | 1−3.80iT−47T2 |
| 53 | 1+(−2.11+3.29i)T+(−22.0−48.2i)T2 |
| 59 | 1+(−2.94−4.58i)T+(−24.5+53.6i)T2 |
| 61 | 1+(1.75+0.800i)T+(39.9+46.1i)T2 |
| 67 | 1+(−0.399+2.78i)T+(−64.2−18.8i)T2 |
| 71 | 1+(8.82+1.26i)T+(68.1+20.0i)T2 |
| 73 | 1+(−7.48−2.19i)T+(61.4+39.4i)T2 |
| 79 | 1+(2.97−1.90i)T+(32.8−71.8i)T2 |
| 83 | 1+(−6.57+7.59i)T+(−11.8−82.1i)T2 |
| 89 | 1+(−7.44+3.39i)T+(58.2−67.2i)T2 |
| 97 | 1+(0.136−0.118i)T+(13.8−96.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.72388758471859677258628820724, −10.78013206039265224694605890167, −10.08406942837117556484938091021, −9.089332629580868000150140945765, −7.85390680603202947228696563159, −7.11295492916031999369531407643, −6.23405095782319707875095487384, −4.72596212180798991574851652207, −3.65078922697836931971561248826, −2.40201691734168770729577878119,
0.26402548698072396689646828368, 2.78416931008114353994901550517, 3.70666210281357500563600906385, 5.25622921636547692984666774918, 6.09855142238405933160308667504, 7.26099186539191053481157273208, 8.413552046677421303611938957551, 9.159220566908339866795781687365, 9.901438211507261837722297160227, 11.21010799842565776452775268565