L(s) = 1 | + (0.106 − 0.0488i)3-s + (−1.32 + 1.14i)5-s + (−2.88 − 1.85i)7-s + (−1.95 + 2.25i)9-s + (0.293 + 2.03i)11-s + (−3.33 + 2.14i)13-s + (−0.0852 + 0.186i)15-s + (0.842 + 2.87i)17-s + (−2.26 − 0.664i)19-s + (−0.399 − 0.0573i)21-s + (0.429 − 4.77i)23-s + (−0.277 + 1.92i)25-s + (−0.198 + 0.674i)27-s + (1.50 − 0.442i)29-s + (−7.01 − 3.20i)31-s + ⋯ |
L(s) = 1 | + (0.0617 − 0.0281i)3-s + (−0.590 + 0.511i)5-s + (−1.09 − 0.701i)7-s + (−0.651 + 0.752i)9-s + (0.0884 + 0.614i)11-s + (−0.924 + 0.594i)13-s + (−0.0220 + 0.0482i)15-s + (0.204 + 0.696i)17-s + (−0.518 − 0.152i)19-s + (−0.0870 − 0.0125i)21-s + (0.0894 − 0.995i)23-s + (−0.0554 + 0.385i)25-s + (−0.0381 + 0.129i)27-s + (0.280 − 0.0822i)29-s + (−1.26 − 0.575i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.836 - 0.547i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 368 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.836 - 0.547i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.120163 + 0.403195i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.120163 + 0.403195i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 23 | \( 1 + (-0.429 + 4.77i)T \) |
good | 3 | \( 1 + (-0.106 + 0.0488i)T + (1.96 - 2.26i)T^{2} \) |
| 5 | \( 1 + (1.32 - 1.14i)T + (0.711 - 4.94i)T^{2} \) |
| 7 | \( 1 + (2.88 + 1.85i)T + (2.90 + 6.36i)T^{2} \) |
| 11 | \( 1 + (-0.293 - 2.03i)T + (-10.5 + 3.09i)T^{2} \) |
| 13 | \( 1 + (3.33 - 2.14i)T + (5.40 - 11.8i)T^{2} \) |
| 17 | \( 1 + (-0.842 - 2.87i)T + (-14.3 + 9.19i)T^{2} \) |
| 19 | \( 1 + (2.26 + 0.664i)T + (15.9 + 10.2i)T^{2} \) |
| 29 | \( 1 + (-1.50 + 0.442i)T + (24.3 - 15.6i)T^{2} \) |
| 31 | \( 1 + (7.01 + 3.20i)T + (20.3 + 23.4i)T^{2} \) |
| 37 | \( 1 + (-6.47 - 5.60i)T + (5.26 + 36.6i)T^{2} \) |
| 41 | \( 1 + (7.67 + 8.85i)T + (-5.83 + 40.5i)T^{2} \) |
| 43 | \( 1 + (-4.27 - 9.36i)T + (-28.1 + 32.4i)T^{2} \) |
| 47 | \( 1 - 3.80iT - 47T^{2} \) |
| 53 | \( 1 + (-2.11 + 3.29i)T + (-22.0 - 48.2i)T^{2} \) |
| 59 | \( 1 + (-2.94 - 4.58i)T + (-24.5 + 53.6i)T^{2} \) |
| 61 | \( 1 + (1.75 + 0.800i)T + (39.9 + 46.1i)T^{2} \) |
| 67 | \( 1 + (-0.399 + 2.78i)T + (-64.2 - 18.8i)T^{2} \) |
| 71 | \( 1 + (8.82 + 1.26i)T + (68.1 + 20.0i)T^{2} \) |
| 73 | \( 1 + (-7.48 - 2.19i)T + (61.4 + 39.4i)T^{2} \) |
| 79 | \( 1 + (2.97 - 1.90i)T + (32.8 - 71.8i)T^{2} \) |
| 83 | \( 1 + (-6.57 + 7.59i)T + (-11.8 - 82.1i)T^{2} \) |
| 89 | \( 1 + (-7.44 + 3.39i)T + (58.2 - 67.2i)T^{2} \) |
| 97 | \( 1 + (0.136 - 0.118i)T + (13.8 - 96.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.72388758471859677258628820724, −10.78013206039265224694605890167, −10.08406942837117556484938091021, −9.089332629580868000150140945765, −7.85390680603202947228696563159, −7.11295492916031999369531407643, −6.23405095782319707875095487384, −4.72596212180798991574851652207, −3.65078922697836931971561248826, −2.40201691734168770729577878119,
0.26402548698072396689646828368, 2.78416931008114353994901550517, 3.70666210281357500563600906385, 5.25622921636547692984666774918, 6.09855142238405933160308667504, 7.26099186539191053481157273208, 8.413552046677421303611938957551, 9.159220566908339866795781687365, 9.901438211507261837722297160227, 11.21010799842565776452775268565