Properties

Label 368.2.s.b.15.5
Level $368$
Weight $2$
Character 368.15
Analytic conductor $2.938$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [368,2,Mod(15,368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(368, base_ring=CyclotomicField(22))
 
chi = DirichletCharacter(H, H._module([11, 0, 17]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("368.15");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 368 = 2^{4} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 368.s (of order \(22\), degree \(10\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.93849479438\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(8\) over \(\Q(\zeta_{22})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 15.5
Character \(\chi\) \(=\) 368.15
Dual form 368.2.s.b.319.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.106877 - 0.0488093i) q^{3} +(-1.32017 + 1.14393i) q^{5} +(-2.88624 - 1.85487i) q^{7} +(-1.95554 + 2.25682i) q^{9} +(0.293255 + 2.03963i) q^{11} +(-3.33277 + 2.14184i) q^{13} +(-0.0852617 + 0.186697i) q^{15} +(0.842757 + 2.87017i) q^{17} +(-2.26214 - 0.664224i) q^{19} +(-0.399009 - 0.0573688i) q^{21} +(0.429086 - 4.77660i) q^{23} +(-0.277311 + 1.92874i) q^{25} +(-0.198156 + 0.674859i) q^{27} +(1.50846 - 0.442925i) q^{29} +(-7.01654 - 3.20435i) q^{31} +(0.130895 + 0.203677i) q^{33} +(5.93217 - 0.852917i) q^{35} +(6.47012 + 5.60639i) q^{37} +(-0.251656 + 0.391585i) q^{39} +(-7.67520 - 8.85765i) q^{41} +(4.27491 + 9.36074i) q^{43} -5.21639i q^{45} +3.80368i q^{47} +(1.98191 + 4.33978i) q^{49} +(0.230163 + 0.265622i) q^{51} +(2.11663 - 3.29354i) q^{53} +(-2.72035 - 2.35720i) q^{55} +(-0.274192 + 0.0394228i) q^{57} +(2.94726 + 4.58603i) q^{59} +(-1.75278 - 0.800468i) q^{61} +(9.83026 - 2.88643i) q^{63} +(1.94970 - 6.64007i) q^{65} +(0.399733 - 2.78020i) q^{67} +(-0.187283 - 0.531454i) q^{69} +(-8.82677 - 1.26910i) q^{71} +(7.48818 + 2.19873i) q^{73} +(0.0645021 + 0.219674i) q^{75} +(2.93686 - 6.43082i) q^{77} +(-2.97137 + 1.90958i) q^{79} +(-1.26318 - 8.78560i) q^{81} +(6.57735 - 7.59066i) q^{83} +(-4.39586 - 2.82505i) q^{85} +(0.139602 - 0.120966i) q^{87} +(7.44478 - 3.39992i) q^{89} +13.5920 q^{91} -0.906312 q^{93} +(3.74623 - 1.71085i) q^{95} +(-0.136456 + 0.118240i) q^{97} +(-5.17655 - 3.32677i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 4 q^{9} + 12 q^{13} + 22 q^{17} + 66 q^{21} + 36 q^{25} + 34 q^{29} + 22 q^{33} + 12 q^{41} - 56 q^{49} - 66 q^{57} - 88 q^{61} - 154 q^{65} - 66 q^{69} - 16 q^{73} - 158 q^{77} - 248 q^{81} - 116 q^{85}+ \cdots - 22 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/368\mathbb{Z}\right)^\times\).

\(n\) \(47\) \(97\) \(277\)
\(\chi(n)\) \(-1\) \(e\left(\frac{17}{22}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.106877 0.0488093i 0.0617057 0.0281801i −0.384323 0.923199i \(-0.625565\pi\)
0.446029 + 0.895019i \(0.352838\pi\)
\(4\) 0 0
\(5\) −1.32017 + 1.14393i −0.590398 + 0.511582i −0.898037 0.439921i \(-0.855007\pi\)
0.307639 + 0.951503i \(0.400461\pi\)
\(6\) 0 0
\(7\) −2.88624 1.85487i −1.09090 0.701076i −0.133846 0.991002i \(-0.542733\pi\)
−0.957049 + 0.289926i \(0.906369\pi\)
\(8\) 0 0
\(9\) −1.95554 + 2.25682i −0.651847 + 0.752272i
\(10\) 0 0
\(11\) 0.293255 + 2.03963i 0.0884197 + 0.614973i 0.985060 + 0.172213i \(0.0550916\pi\)
−0.896640 + 0.442760i \(0.853999\pi\)
\(12\) 0 0
\(13\) −3.33277 + 2.14184i −0.924345 + 0.594041i −0.913915 0.405905i \(-0.866956\pi\)
−0.0104299 + 0.999946i \(0.503320\pi\)
\(14\) 0 0
\(15\) −0.0852617 + 0.186697i −0.0220145 + 0.0482050i
\(16\) 0 0
\(17\) 0.842757 + 2.87017i 0.204399 + 0.696118i 0.996337 + 0.0855166i \(0.0272541\pi\)
−0.791938 + 0.610601i \(0.790928\pi\)
\(18\) 0 0
\(19\) −2.26214 0.664224i −0.518970 0.152383i 0.0117492 0.999931i \(-0.496260\pi\)
−0.530719 + 0.847548i \(0.678078\pi\)
\(20\) 0 0
\(21\) −0.399009 0.0573688i −0.0870708 0.0125189i
\(22\) 0 0
\(23\) 0.429086 4.77660i 0.0894706 0.995989i
\(24\) 0 0
\(25\) −0.277311 + 1.92874i −0.0554621 + 0.385748i
\(26\) 0 0
\(27\) −0.198156 + 0.674859i −0.0381352 + 0.129877i
\(28\) 0 0
\(29\) 1.50846 0.442925i 0.280114 0.0822490i −0.138658 0.990340i \(-0.544279\pi\)
0.418772 + 0.908091i \(0.362461\pi\)
\(30\) 0 0
\(31\) −7.01654 3.20435i −1.26021 0.575518i −0.330497 0.943807i \(-0.607216\pi\)
−0.929711 + 0.368289i \(0.879944\pi\)
\(32\) 0 0
\(33\) 0.130895 + 0.203677i 0.0227860 + 0.0354557i
\(34\) 0 0
\(35\) 5.93217 0.852917i 1.00272 0.144169i
\(36\) 0 0
\(37\) 6.47012 + 5.60639i 1.06368 + 0.921685i 0.997100 0.0760963i \(-0.0242456\pi\)
0.0665804 + 0.997781i \(0.478791\pi\)
\(38\) 0 0
\(39\) −0.251656 + 0.391585i −0.0402973 + 0.0627038i
\(40\) 0 0
\(41\) −7.67520 8.85765i −1.19866 1.38333i −0.903889 0.427767i \(-0.859301\pi\)
−0.294776 0.955567i \(-0.595245\pi\)
\(42\) 0 0
\(43\) 4.27491 + 9.36074i 0.651917 + 1.42750i 0.889866 + 0.456222i \(0.150798\pi\)
−0.237949 + 0.971278i \(0.576475\pi\)
\(44\) 0 0
\(45\) 5.21639i 0.777613i
\(46\) 0 0
\(47\) 3.80368i 0.554824i 0.960751 + 0.277412i \(0.0894767\pi\)
−0.960751 + 0.277412i \(0.910523\pi\)
\(48\) 0 0
\(49\) 1.98191 + 4.33978i 0.283130 + 0.619969i
\(50\) 0 0
\(51\) 0.230163 + 0.265622i 0.0322292 + 0.0371945i
\(52\) 0 0
\(53\) 2.11663 3.29354i 0.290741 0.452402i −0.664901 0.746931i \(-0.731526\pi\)
0.955643 + 0.294529i \(0.0951627\pi\)
\(54\) 0 0
\(55\) −2.72035 2.35720i −0.366812 0.317844i
\(56\) 0 0
\(57\) −0.274192 + 0.0394228i −0.0363176 + 0.00522168i
\(58\) 0 0
\(59\) 2.94726 + 4.58603i 0.383701 + 0.597050i 0.978355 0.206931i \(-0.0663477\pi\)
−0.594655 + 0.803981i \(0.702711\pi\)
\(60\) 0 0
\(61\) −1.75278 0.800468i −0.224421 0.102489i 0.300032 0.953929i \(-0.403003\pi\)
−0.524452 + 0.851440i \(0.675730\pi\)
\(62\) 0 0
\(63\) 9.83026 2.88643i 1.23850 0.363655i
\(64\) 0 0
\(65\) 1.94970 6.64007i 0.241830 0.823599i
\(66\) 0 0
\(67\) 0.399733 2.78020i 0.0488351 0.339656i −0.950726 0.310032i \(-0.899660\pi\)
0.999561 0.0296233i \(-0.00943078\pi\)
\(68\) 0 0
\(69\) −0.187283 0.531454i −0.0225462 0.0639795i
\(70\) 0 0
\(71\) −8.82677 1.26910i −1.04755 0.150614i −0.403015 0.915193i \(-0.632038\pi\)
−0.644530 + 0.764579i \(0.722947\pi\)
\(72\) 0 0
\(73\) 7.48818 + 2.19873i 0.876425 + 0.257342i 0.688846 0.724908i \(-0.258118\pi\)
0.187579 + 0.982249i \(0.439936\pi\)
\(74\) 0 0
\(75\) 0.0645021 + 0.219674i 0.00744806 + 0.0253658i
\(76\) 0 0
\(77\) 2.93686 6.43082i 0.334686 0.732860i
\(78\) 0 0
\(79\) −2.97137 + 1.90958i −0.334305 + 0.214845i −0.697014 0.717058i \(-0.745488\pi\)
0.362709 + 0.931903i \(0.381852\pi\)
\(80\) 0 0
\(81\) −1.26318 8.78560i −0.140353 0.976178i
\(82\) 0 0
\(83\) 6.57735 7.59066i 0.721958 0.833184i −0.269583 0.962977i \(-0.586886\pi\)
0.991541 + 0.129793i \(0.0414314\pi\)
\(84\) 0 0
\(85\) −4.39586 2.82505i −0.476798 0.306420i
\(86\) 0 0
\(87\) 0.139602 0.120966i 0.0149669 0.0129689i
\(88\) 0 0
\(89\) 7.44478 3.39992i 0.789145 0.360390i 0.0202741 0.999794i \(-0.493546\pi\)
0.768871 + 0.639404i \(0.220819\pi\)
\(90\) 0 0
\(91\) 13.5920 1.42483
\(92\) 0 0
\(93\) −0.906312 −0.0939802
\(94\) 0 0
\(95\) 3.74623 1.71085i 0.384355 0.175529i
\(96\) 0 0
\(97\) −0.136456 + 0.118240i −0.0138550 + 0.0120054i −0.661761 0.749715i \(-0.730191\pi\)
0.647906 + 0.761721i \(0.275645\pi\)
\(98\) 0 0
\(99\) −5.17655 3.32677i −0.520263 0.334353i
\(100\) 0 0
\(101\) 0.0767173 0.0885364i 0.00763365 0.00880970i −0.751920 0.659254i \(-0.770872\pi\)
0.759554 + 0.650445i \(0.225417\pi\)
\(102\) 0 0
\(103\) 2.11055 + 14.6792i 0.207959 + 1.44638i 0.779805 + 0.626023i \(0.215318\pi\)
−0.571846 + 0.820361i \(0.693773\pi\)
\(104\) 0 0
\(105\) 0.592385 0.380703i 0.0578108 0.0371528i
\(106\) 0 0
\(107\) −6.90224 + 15.1138i −0.667265 + 1.46111i 0.208329 + 0.978059i \(0.433198\pi\)
−0.875594 + 0.483048i \(0.839530\pi\)
\(108\) 0 0
\(109\) 3.28732 + 11.1956i 0.314868 + 1.07234i 0.953140 + 0.302531i \(0.0978315\pi\)
−0.638271 + 0.769811i \(0.720350\pi\)
\(110\) 0 0
\(111\) 0.965154 + 0.283395i 0.0916083 + 0.0268986i
\(112\) 0 0
\(113\) −2.47103 0.355281i −0.232455 0.0334220i 0.0251028 0.999685i \(-0.492009\pi\)
−0.257558 + 0.966263i \(0.582918\pi\)
\(114\) 0 0
\(115\) 4.89764 + 6.79676i 0.456707 + 0.633801i
\(116\) 0 0
\(117\) 1.68363 11.7099i 0.155652 1.08258i
\(118\) 0 0
\(119\) 2.89140 9.84719i 0.265054 0.902691i
\(120\) 0 0
\(121\) 6.48032 1.90279i 0.589120 0.172981i
\(122\) 0 0
\(123\) −1.25264 0.572062i −0.112947 0.0515811i
\(124\) 0 0
\(125\) −6.56230 10.2111i −0.586950 0.913312i
\(126\) 0 0
\(127\) −5.88243 + 0.845766i −0.521981 + 0.0750496i −0.398269 0.917269i \(-0.630389\pi\)
−0.123712 + 0.992318i \(0.539480\pi\)
\(128\) 0 0
\(129\) 0.913782 + 0.791797i 0.0804540 + 0.0697138i
\(130\) 0 0
\(131\) 1.89584 2.94999i 0.165641 0.257742i −0.748504 0.663130i \(-0.769227\pi\)
0.914144 + 0.405389i \(0.132864\pi\)
\(132\) 0 0
\(133\) 5.29702 + 6.11309i 0.459310 + 0.530072i
\(134\) 0 0
\(135\) −0.510393 1.11761i −0.0439277 0.0961882i
\(136\) 0 0
\(137\) 14.5442i 1.24260i 0.783573 + 0.621299i \(0.213395\pi\)
−0.783573 + 0.621299i \(0.786605\pi\)
\(138\) 0 0
\(139\) 4.46279i 0.378529i 0.981926 + 0.189265i \(0.0606104\pi\)
−0.981926 + 0.189265i \(0.939390\pi\)
\(140\) 0 0
\(141\) 0.185655 + 0.406528i 0.0156350 + 0.0342358i
\(142\) 0 0
\(143\) −5.34593 6.16953i −0.447049 0.515922i
\(144\) 0 0
\(145\) −1.48475 + 2.31032i −0.123302 + 0.191861i
\(146\) 0 0
\(147\) 0.423643 + 0.367089i 0.0349415 + 0.0302770i
\(148\) 0 0
\(149\) −5.20979 + 0.749055i −0.426803 + 0.0613650i −0.352369 0.935861i \(-0.614624\pi\)
−0.0744334 + 0.997226i \(0.523715\pi\)
\(150\) 0 0
\(151\) −8.90169 13.8513i −0.724409 1.12720i −0.986753 0.162229i \(-0.948132\pi\)
0.262344 0.964974i \(-0.415505\pi\)
\(152\) 0 0
\(153\) −8.12549 3.71079i −0.656907 0.299999i
\(154\) 0 0
\(155\) 12.9286 3.79617i 1.03845 0.304916i
\(156\) 0 0
\(157\) −2.26692 + 7.72043i −0.180920 + 0.616158i 0.818228 + 0.574894i \(0.194957\pi\)
−0.999148 + 0.0412639i \(0.986862\pi\)
\(158\) 0 0
\(159\) 0.0654646 0.455316i 0.00519168 0.0361089i
\(160\) 0 0
\(161\) −10.0984 + 12.9905i −0.795867 + 1.02379i
\(162\) 0 0
\(163\) −22.2514 3.19928i −1.74287 0.250587i −0.803942 0.594707i \(-0.797268\pi\)
−0.938925 + 0.344121i \(0.888177\pi\)
\(164\) 0 0
\(165\) −0.405797 0.119153i −0.0315913 0.00927603i
\(166\) 0 0
\(167\) −5.02153 17.1018i −0.388578 1.32337i −0.889125 0.457665i \(-0.848686\pi\)
0.500547 0.865710i \(-0.333132\pi\)
\(168\) 0 0
\(169\) 1.11949 2.45135i 0.0861148 0.188565i
\(170\) 0 0
\(171\) 5.92274 3.80631i 0.452923 0.291076i
\(172\) 0 0
\(173\) 3.18949 + 22.1834i 0.242493 + 1.68657i 0.639527 + 0.768769i \(0.279130\pi\)
−0.397034 + 0.917804i \(0.629961\pi\)
\(174\) 0 0
\(175\) 4.37795 5.05242i 0.330942 0.381927i
\(176\) 0 0
\(177\) 0.538836 + 0.346289i 0.0405014 + 0.0260287i
\(178\) 0 0
\(179\) −17.7381 + 15.3701i −1.32581 + 1.14882i −0.348423 + 0.937337i \(0.613283\pi\)
−0.977382 + 0.211480i \(0.932172\pi\)
\(180\) 0 0
\(181\) −21.7001 + 9.91012i −1.61296 + 0.736614i −0.998624 0.0524324i \(-0.983303\pi\)
−0.614334 + 0.789046i \(0.710575\pi\)
\(182\) 0 0
\(183\) −0.226403 −0.0167362
\(184\) 0 0
\(185\) −14.9550 −1.09951
\(186\) 0 0
\(187\) −5.60695 + 2.56061i −0.410021 + 0.187250i
\(188\) 0 0
\(189\) 1.82370 1.58025i 0.132655 0.114946i
\(190\) 0 0
\(191\) 17.3800 + 11.1694i 1.25757 + 0.808192i 0.987950 0.154775i \(-0.0494653\pi\)
0.269621 + 0.962967i \(0.413102\pi\)
\(192\) 0 0
\(193\) 0.929480 1.07268i 0.0669055 0.0772130i −0.721310 0.692612i \(-0.756460\pi\)
0.788216 + 0.615399i \(0.211005\pi\)
\(194\) 0 0
\(195\) −0.115718 0.804837i −0.00828674 0.0576355i
\(196\) 0 0
\(197\) 10.5825 6.80094i 0.753970 0.484547i −0.106333 0.994331i \(-0.533911\pi\)
0.860303 + 0.509784i \(0.170275\pi\)
\(198\) 0 0
\(199\) −4.46040 + 9.76691i −0.316189 + 0.692358i −0.999279 0.0379768i \(-0.987909\pi\)
0.683089 + 0.730335i \(0.260636\pi\)
\(200\) 0 0
\(201\) −0.0929772 0.316651i −0.00655811 0.0223349i
\(202\) 0 0
\(203\) −5.17535 1.51962i −0.363238 0.106656i
\(204\) 0 0
\(205\) 20.2651 + 2.91368i 1.41538 + 0.203501i
\(206\) 0 0
\(207\) 9.94080 + 10.3092i 0.690934 + 0.716539i
\(208\) 0 0
\(209\) 0.691390 4.80872i 0.0478244 0.332626i
\(210\) 0 0
\(211\) 3.22656 10.9887i 0.222126 0.756491i −0.770729 0.637163i \(-0.780108\pi\)
0.992855 0.119328i \(-0.0380740\pi\)
\(212\) 0 0
\(213\) −1.00533 + 0.295191i −0.0688838 + 0.0202261i
\(214\) 0 0
\(215\) −16.3517 7.46755i −1.11517 0.509283i
\(216\) 0 0
\(217\) 14.3078 + 22.2633i 0.971274 + 1.51133i
\(218\) 0 0
\(219\) 0.907636 0.130498i 0.0613323 0.00881826i
\(220\) 0 0
\(221\) −8.95617 7.76057i −0.602457 0.522032i
\(222\) 0 0
\(223\) −13.6521 + 21.2431i −0.914212 + 1.42254i −0.00788217 + 0.999969i \(0.502509\pi\)
−0.906329 + 0.422572i \(0.861127\pi\)
\(224\) 0 0
\(225\) −3.81051 4.39757i −0.254034 0.293171i
\(226\) 0 0
\(227\) −2.36847 5.18623i −0.157201 0.344222i 0.814600 0.580022i \(-0.196956\pi\)
−0.971802 + 0.235800i \(0.924229\pi\)
\(228\) 0 0
\(229\) 13.6778i 0.903852i 0.892055 + 0.451926i \(0.149263\pi\)
−0.892055 + 0.451926i \(0.850737\pi\)
\(230\) 0 0
\(231\) 0.830655i 0.0546531i
\(232\) 0 0
\(233\) −2.23268 4.88888i −0.146268 0.320281i 0.822291 0.569067i \(-0.192696\pi\)
−0.968558 + 0.248786i \(0.919968\pi\)
\(234\) 0 0
\(235\) −4.35115 5.02150i −0.283838 0.327567i
\(236\) 0 0
\(237\) −0.224367 + 0.349122i −0.0145742 + 0.0226779i
\(238\) 0 0
\(239\) 19.9940 + 17.3249i 1.29330 + 1.12065i 0.985586 + 0.169175i \(0.0541103\pi\)
0.307716 + 0.951478i \(0.400435\pi\)
\(240\) 0 0
\(241\) −20.8629 + 2.99963i −1.34390 + 0.193223i −0.776445 0.630185i \(-0.782979\pi\)
−0.567450 + 0.823408i \(0.692070\pi\)
\(242\) 0 0
\(243\) −1.70460 2.65241i −0.109350 0.170152i
\(244\) 0 0
\(245\) −7.58088 3.46207i −0.484324 0.221184i
\(246\) 0 0
\(247\) 8.96186 2.63144i 0.570229 0.167434i
\(248\) 0 0
\(249\) 0.332475 1.13231i 0.0210698 0.0717570i
\(250\) 0 0
\(251\) 3.92078 27.2696i 0.247478 1.72124i −0.365215 0.930923i \(-0.619004\pi\)
0.612692 0.790321i \(-0.290086\pi\)
\(252\) 0 0
\(253\) 9.86834 0.525584i 0.620417 0.0330432i
\(254\) 0 0
\(255\) −0.607707 0.0873751i −0.0380561 0.00547164i
\(256\) 0 0
\(257\) 6.46197 + 1.89741i 0.403087 + 0.118357i 0.476991 0.878908i \(-0.341728\pi\)
−0.0739038 + 0.997265i \(0.523546\pi\)
\(258\) 0 0
\(259\) −8.27516 28.1826i −0.514194 1.75118i
\(260\) 0 0
\(261\) −1.95026 + 4.27048i −0.120718 + 0.264336i
\(262\) 0 0
\(263\) 1.97785 1.27109i 0.121960 0.0783787i −0.478239 0.878230i \(-0.658725\pi\)
0.600198 + 0.799851i \(0.295088\pi\)
\(264\) 0 0
\(265\) 0.973280 + 6.76931i 0.0597881 + 0.415835i
\(266\) 0 0
\(267\) 0.629731 0.726749i 0.0385389 0.0444763i
\(268\) 0 0
\(269\) −7.41974 4.76838i −0.452390 0.290733i 0.294536 0.955640i \(-0.404835\pi\)
−0.746926 + 0.664907i \(0.768471\pi\)
\(270\) 0 0
\(271\) −6.14891 + 5.32806i −0.373520 + 0.323657i −0.821310 0.570482i \(-0.806757\pi\)
0.447790 + 0.894139i \(0.352211\pi\)
\(272\) 0 0
\(273\) 1.45268 0.663417i 0.0879202 0.0401518i
\(274\) 0 0
\(275\) −4.01524 −0.242128
\(276\) 0 0
\(277\) 0.0850459 0.00510991 0.00255496 0.999997i \(-0.499187\pi\)
0.00255496 + 0.999997i \(0.499187\pi\)
\(278\) 0 0
\(279\) 20.9528 9.56881i 1.25441 0.572870i
\(280\) 0 0
\(281\) 13.7750 11.9361i 0.821748 0.712049i −0.138752 0.990327i \(-0.544309\pi\)
0.960501 + 0.278278i \(0.0897637\pi\)
\(282\) 0 0
\(283\) −16.5423 10.6311i −0.983341 0.631955i −0.0529781 0.998596i \(-0.516871\pi\)
−0.930362 + 0.366641i \(0.880508\pi\)
\(284\) 0 0
\(285\) 0.316882 0.365702i 0.0187705 0.0216623i
\(286\) 0 0
\(287\) 5.72264 + 39.8018i 0.337797 + 2.34943i
\(288\) 0 0
\(289\) 6.77368 4.35318i 0.398452 0.256070i
\(290\) 0 0
\(291\) −0.00881286 + 0.0192975i −0.000516619 + 0.00113124i
\(292\) 0 0
\(293\) −2.95593 10.0670i −0.172687 0.588118i −0.999665 0.0258837i \(-0.991760\pi\)
0.826978 0.562234i \(-0.190058\pi\)
\(294\) 0 0
\(295\) −9.13699 2.68286i −0.531976 0.156202i
\(296\) 0 0
\(297\) −1.43458 0.206261i −0.0832425 0.0119685i
\(298\) 0 0
\(299\) 8.80068 + 16.8384i 0.508956 + 0.973787i
\(300\) 0 0
\(301\) 5.02458 34.9467i 0.289612 2.01430i
\(302\) 0 0
\(303\) 0.00387794 0.0132071i 0.000222782 0.000758726i
\(304\) 0 0
\(305\) 3.22965 0.948310i 0.184929 0.0543001i
\(306\) 0 0
\(307\) 3.16545 + 1.44561i 0.180662 + 0.0825056i 0.503693 0.863883i \(-0.331974\pi\)
−0.323031 + 0.946389i \(0.604702\pi\)
\(308\) 0 0
\(309\) 0.942051 + 1.46586i 0.0535914 + 0.0833899i
\(310\) 0 0
\(311\) 23.9759 3.44721i 1.35955 0.195473i 0.576328 0.817219i \(-0.304485\pi\)
0.783219 + 0.621745i \(0.213576\pi\)
\(312\) 0 0
\(313\) 0.954438 + 0.827025i 0.0539480 + 0.0467462i 0.681417 0.731895i \(-0.261364\pi\)
−0.627469 + 0.778641i \(0.715909\pi\)
\(314\) 0 0
\(315\) −9.67573 + 15.0557i −0.545166 + 0.848294i
\(316\) 0 0
\(317\) 15.7072 + 18.1271i 0.882205 + 1.01812i 0.999686 + 0.0250439i \(0.00797257\pi\)
−0.117481 + 0.993075i \(0.537482\pi\)
\(318\) 0 0
\(319\) 1.34577 + 2.94682i 0.0753486 + 0.164990i
\(320\) 0 0
\(321\) 1.95222i 0.108962i
\(322\) 0 0
\(323\) 7.05250i 0.392411i
\(324\) 0 0
\(325\) −3.20684 7.02200i −0.177884 0.389511i
\(326\) 0 0
\(327\) 0.897789 + 1.03610i 0.0496478 + 0.0572966i
\(328\) 0 0
\(329\) 7.05534 10.9783i 0.388974 0.605255i
\(330\) 0 0
\(331\) 23.1969 + 20.1002i 1.27501 + 1.10481i 0.989208 + 0.146520i \(0.0468071\pi\)
0.285807 + 0.958287i \(0.407738\pi\)
\(332\) 0 0
\(333\) −25.3052 + 3.63833i −1.38671 + 0.199380i
\(334\) 0 0
\(335\) 2.65265 + 4.12760i 0.144930 + 0.225515i
\(336\) 0 0
\(337\) 2.98910 + 1.36508i 0.162827 + 0.0743605i 0.495161 0.868801i \(-0.335109\pi\)
−0.332334 + 0.943162i \(0.607836\pi\)
\(338\) 0 0
\(339\) −0.281438 + 0.0826378i −0.0152856 + 0.00448827i
\(340\) 0 0
\(341\) 4.47806 15.2509i 0.242501 0.825881i
\(342\) 0 0
\(343\) −1.08838 + 7.56986i −0.0587671 + 0.408734i
\(344\) 0 0
\(345\) 0.855192 + 0.487370i 0.0460420 + 0.0262391i
\(346\) 0 0
\(347\) −16.8716 2.42577i −0.905713 0.130222i −0.326310 0.945263i \(-0.605805\pi\)
−0.579403 + 0.815041i \(0.696714\pi\)
\(348\) 0 0
\(349\) −13.3777 3.92804i −0.716090 0.210263i −0.0966630 0.995317i \(-0.530817\pi\)
−0.619427 + 0.785054i \(0.712635\pi\)
\(350\) 0 0
\(351\) −0.785032 2.67357i −0.0419019 0.142705i
\(352\) 0 0
\(353\) 12.7876 28.0010i 0.680616 1.49034i −0.181373 0.983414i \(-0.558054\pi\)
0.861989 0.506927i \(-0.169219\pi\)
\(354\) 0 0
\(355\) 13.1046 8.42181i 0.695520 0.446983i
\(356\) 0 0
\(357\) −0.171609 1.19357i −0.00908254 0.0631704i
\(358\) 0 0
\(359\) 13.3442 15.4001i 0.704282 0.812784i −0.285043 0.958515i \(-0.592008\pi\)
0.989324 + 0.145731i \(0.0465533\pi\)
\(360\) 0 0
\(361\) −11.3077 7.26704i −0.595144 0.382476i
\(362\) 0 0
\(363\) 0.599726 0.519665i 0.0314774 0.0272753i
\(364\) 0 0
\(365\) −12.4009 + 5.66328i −0.649091 + 0.296430i
\(366\) 0 0
\(367\) 12.9167 0.674247 0.337124 0.941460i \(-0.390546\pi\)
0.337124 + 0.941460i \(0.390546\pi\)
\(368\) 0 0
\(369\) 34.9993 1.82199
\(370\) 0 0
\(371\) −12.2182 + 5.57986i −0.634337 + 0.289692i
\(372\) 0 0
\(373\) 16.0991 13.9499i 0.833579 0.722300i −0.129483 0.991582i \(-0.541332\pi\)
0.963062 + 0.269281i \(0.0867862\pi\)
\(374\) 0 0
\(375\) −1.19976 0.771039i −0.0619553 0.0398163i
\(376\) 0 0
\(377\) −4.07869 + 4.70706i −0.210063 + 0.242426i
\(378\) 0 0
\(379\) 3.11878 + 21.6916i 0.160201 + 1.11422i 0.898253 + 0.439479i \(0.144837\pi\)
−0.738051 + 0.674744i \(0.764254\pi\)
\(380\) 0 0
\(381\) −0.587418 + 0.377511i −0.0300943 + 0.0193405i
\(382\) 0 0
\(383\) 4.48093 9.81186i 0.228965 0.501363i −0.759926 0.650010i \(-0.774765\pi\)
0.988890 + 0.148647i \(0.0474920\pi\)
\(384\) 0 0
\(385\) 3.47928 + 11.8493i 0.177320 + 0.603898i
\(386\) 0 0
\(387\) −29.4852 8.65764i −1.49882 0.440093i
\(388\) 0 0
\(389\) 26.1130 + 3.75449i 1.32398 + 0.190360i 0.767795 0.640696i \(-0.221354\pi\)
0.556189 + 0.831056i \(0.312263\pi\)
\(390\) 0 0
\(391\) 14.0713 2.79397i 0.711614 0.141297i
\(392\) 0 0
\(393\) 0.0586359 0.407822i 0.00295779 0.0205719i
\(394\) 0 0
\(395\) 1.73827 5.92002i 0.0874620 0.297868i
\(396\) 0 0
\(397\) 33.1789 9.74221i 1.66520 0.488947i 0.692580 0.721341i \(-0.256474\pi\)
0.972622 + 0.232394i \(0.0746558\pi\)
\(398\) 0 0
\(399\) 0.864507 + 0.394807i 0.0432795 + 0.0197651i
\(400\) 0 0
\(401\) −7.97618 12.4112i −0.398311 0.619784i 0.582941 0.812515i \(-0.301902\pi\)
−0.981252 + 0.192731i \(0.938266\pi\)
\(402\) 0 0
\(403\) 30.2478 4.34897i 1.50675 0.216638i
\(404\) 0 0
\(405\) 11.7177 + 10.1535i 0.582260 + 0.504531i
\(406\) 0 0
\(407\) −9.53759 + 14.8408i −0.472761 + 0.735630i
\(408\) 0 0
\(409\) −22.8572 26.3786i −1.13022 1.30434i −0.946988 0.321268i \(-0.895891\pi\)
−0.183228 0.983071i \(-0.558655\pi\)
\(410\) 0 0
\(411\) 0.709894 + 1.55445i 0.0350165 + 0.0766754i
\(412\) 0 0
\(413\) 18.7032i 0.920322i
\(414\) 0 0
\(415\) 17.5450i 0.861250i
\(416\) 0 0
\(417\) 0.217826 + 0.476972i 0.0106670 + 0.0233574i
\(418\) 0 0
\(419\) −25.0836 28.9481i −1.22542 1.41421i −0.879472 0.475950i \(-0.842104\pi\)
−0.345944 0.938255i \(-0.612441\pi\)
\(420\) 0 0
\(421\) −6.85029 + 10.6593i −0.333863 + 0.519501i −0.967080 0.254474i \(-0.918098\pi\)
0.633217 + 0.773974i \(0.281734\pi\)
\(422\) 0 0
\(423\) −8.58420 7.43826i −0.417378 0.361660i
\(424\) 0 0
\(425\) −5.76951 + 0.829530i −0.279862 + 0.0402381i
\(426\) 0 0
\(427\) 3.57417 + 5.56152i 0.172966 + 0.269141i
\(428\) 0 0
\(429\) −0.872490 0.398453i −0.0421242 0.0192375i
\(430\) 0 0
\(431\) 19.3748 5.68896i 0.933252 0.274028i 0.220455 0.975397i \(-0.429246\pi\)
0.712798 + 0.701370i \(0.247428\pi\)
\(432\) 0 0
\(433\) −5.17013 + 17.6078i −0.248460 + 0.846178i 0.736945 + 0.675953i \(0.236268\pi\)
−0.985405 + 0.170225i \(0.945550\pi\)
\(434\) 0 0
\(435\) −0.0459214 + 0.319390i −0.00220176 + 0.0153136i
\(436\) 0 0
\(437\) −4.14338 + 10.5203i −0.198205 + 0.503255i
\(438\) 0 0
\(439\) −17.7035 2.54538i −0.844941 0.121484i −0.293769 0.955876i \(-0.594910\pi\)
−0.551171 + 0.834392i \(0.685819\pi\)
\(440\) 0 0
\(441\) −13.6698 4.01381i −0.650943 0.191134i
\(442\) 0 0
\(443\) 3.42704 + 11.6714i 0.162824 + 0.554527i 0.999971 + 0.00754993i \(0.00240324\pi\)
−0.837148 + 0.546977i \(0.815779\pi\)
\(444\) 0 0
\(445\) −5.93909 + 13.0048i −0.281540 + 0.616486i
\(446\) 0 0
\(447\) −0.520248 + 0.334343i −0.0246069 + 0.0158139i
\(448\) 0 0
\(449\) 3.57335 + 24.8532i 0.168637 + 1.17290i 0.881705 + 0.471801i \(0.156396\pi\)
−0.713068 + 0.701095i \(0.752695\pi\)
\(450\) 0 0
\(451\) 15.8156 18.2521i 0.744726 0.859460i
\(452\) 0 0
\(453\) −1.62746 1.04591i −0.0764648 0.0491410i
\(454\) 0 0
\(455\) −17.9438 + 15.5484i −0.841217 + 0.728919i
\(456\) 0 0
\(457\) 12.6576 5.78055i 0.592100 0.270403i −0.0967481 0.995309i \(-0.530844\pi\)
0.688848 + 0.724906i \(0.258117\pi\)
\(458\) 0 0
\(459\) −2.10396 −0.0982043
\(460\) 0 0
\(461\) −36.7453 −1.71140 −0.855701 0.517471i \(-0.826874\pi\)
−0.855701 + 0.517471i \(0.826874\pi\)
\(462\) 0 0
\(463\) −10.6743 + 4.87477i −0.496075 + 0.226550i −0.647710 0.761887i \(-0.724273\pi\)
0.151635 + 0.988436i \(0.451546\pi\)
\(464\) 0 0
\(465\) 1.19649 1.03676i 0.0554857 0.0480786i
\(466\) 0 0
\(467\) 10.2099 + 6.56148i 0.472456 + 0.303629i 0.755116 0.655591i \(-0.227580\pi\)
−0.282660 + 0.959220i \(0.591217\pi\)
\(468\) 0 0
\(469\) −6.31064 + 7.28287i −0.291398 + 0.336292i
\(470\) 0 0
\(471\) 0.134546 + 0.935787i 0.00619955 + 0.0431188i
\(472\) 0 0
\(473\) −17.8388 + 11.4643i −0.820231 + 0.527130i
\(474\) 0 0
\(475\) 1.90843 4.17888i 0.0875647 0.191740i
\(476\) 0 0
\(477\) 3.29375 + 11.2175i 0.150811 + 0.513614i
\(478\) 0 0
\(479\) 15.0197 + 4.41019i 0.686269 + 0.201507i 0.606235 0.795285i \(-0.292679\pi\)
0.0800338 + 0.996792i \(0.474497\pi\)
\(480\) 0 0
\(481\) −33.5715 4.82685i −1.53073 0.220085i
\(482\) 0 0
\(483\) −0.445237 + 1.88129i −0.0202590 + 0.0856016i
\(484\) 0 0
\(485\) 0.0448866 0.312193i 0.00203819 0.0141759i
\(486\) 0 0
\(487\) 0.234925 0.800081i 0.0106455 0.0362551i −0.953999 0.299810i \(-0.903077\pi\)
0.964644 + 0.263555i \(0.0848949\pi\)
\(488\) 0 0
\(489\) −2.53433 + 0.744147i −0.114606 + 0.0336515i
\(490\) 0 0
\(491\) −25.1086 11.4667i −1.13314 0.517486i −0.241573 0.970383i \(-0.577663\pi\)
−0.891563 + 0.452897i \(0.850391\pi\)
\(492\) 0 0
\(493\) 2.54254 + 3.95626i 0.114510 + 0.178181i
\(494\) 0 0
\(495\) 10.6395 1.52973i 0.478211 0.0687563i
\(496\) 0 0
\(497\) 23.1221 + 20.0355i 1.03717 + 0.898713i
\(498\) 0 0
\(499\) −20.0953 + 31.2689i −0.899588 + 1.39979i 0.0169575 + 0.999856i \(0.494602\pi\)
−0.916546 + 0.399930i \(0.869034\pi\)
\(500\) 0 0
\(501\) −1.37141 1.58270i −0.0612703 0.0707096i
\(502\) 0 0
\(503\) 3.39112 + 7.42551i 0.151202 + 0.331087i 0.970043 0.242934i \(-0.0781099\pi\)
−0.818840 + 0.574021i \(0.805383\pi\)
\(504\) 0 0
\(505\) 0.204642i 0.00910647i
\(506\) 0 0
\(507\) 0.316635i 0.0140623i
\(508\) 0 0
\(509\) 7.92945 + 17.3631i 0.351467 + 0.769604i 0.999965 + 0.00838826i \(0.00267010\pi\)
−0.648498 + 0.761216i \(0.724603\pi\)
\(510\) 0 0
\(511\) −17.5343 20.2357i −0.775672 0.895173i
\(512\) 0 0
\(513\) 0.896515 1.39500i 0.0395821 0.0615909i
\(514\) 0 0
\(515\) −19.5783 16.9647i −0.862723 0.747553i
\(516\) 0 0
\(517\) −7.75811 + 1.11545i −0.341201 + 0.0490574i
\(518\) 0 0
\(519\) 1.42364 + 2.21523i 0.0624909 + 0.0972377i
\(520\) 0 0
\(521\) 13.5591 + 6.19221i 0.594033 + 0.271286i 0.689662 0.724131i \(-0.257759\pi\)
−0.0956292 + 0.995417i \(0.530486\pi\)
\(522\) 0 0
\(523\) 27.5519 8.08998i 1.20476 0.353750i 0.383090 0.923711i \(-0.374860\pi\)
0.821672 + 0.569961i \(0.193042\pi\)
\(524\) 0 0
\(525\) 0.221299 0.753674i 0.00965827 0.0328930i
\(526\) 0 0
\(527\) 3.28377 22.8392i 0.143043 0.994889i
\(528\) 0 0
\(529\) −22.6318 4.09914i −0.983990 0.178223i
\(530\) 0 0
\(531\) −16.1133 2.31674i −0.699258 0.100538i
\(532\) 0 0
\(533\) 44.5514 + 13.0815i 1.92974 + 0.566622i
\(534\) 0 0
\(535\) −8.17705 27.8485i −0.353525 1.20399i
\(536\) 0 0
\(537\) −1.14559 + 2.50850i −0.0494361 + 0.108250i
\(538\) 0 0
\(539\) −8.27036 + 5.31504i −0.356229 + 0.228935i
\(540\) 0 0
\(541\) −2.99096 20.8026i −0.128592 0.894374i −0.947342 0.320224i \(-0.896242\pi\)
0.818750 0.574150i \(-0.194667\pi\)
\(542\) 0 0
\(543\) −1.83555 + 2.11834i −0.0787710 + 0.0909065i
\(544\) 0 0
\(545\) −17.1468 11.0196i −0.734489 0.472027i
\(546\) 0 0
\(547\) 19.7118 17.0804i 0.842818 0.730306i −0.122196 0.992506i \(-0.538994\pi\)
0.965013 + 0.262200i \(0.0844481\pi\)
\(548\) 0 0
\(549\) 5.23414 2.39035i 0.223388 0.102018i
\(550\) 0 0
\(551\) −3.70655 −0.157904
\(552\) 0 0
\(553\) 12.1181 0.515314
\(554\) 0 0
\(555\) −1.59835 + 0.729942i −0.0678462 + 0.0309843i
\(556\) 0 0
\(557\) −7.58689 + 6.57408i −0.321467 + 0.278553i −0.800612 0.599183i \(-0.795492\pi\)
0.479145 + 0.877736i \(0.340947\pi\)
\(558\) 0 0
\(559\) −34.2965 22.0410i −1.45059 0.932237i
\(560\) 0 0
\(561\) −0.474275 + 0.547342i −0.0200239 + 0.0231088i
\(562\) 0 0
\(563\) 3.73863 + 26.0027i 0.157564 + 1.09588i 0.903104 + 0.429423i \(0.141283\pi\)
−0.745539 + 0.666462i \(0.767808\pi\)
\(564\) 0 0
\(565\) 3.66860 2.35766i 0.154339 0.0991876i
\(566\) 0 0
\(567\) −12.6503 + 27.7004i −0.531264 + 1.16331i
\(568\) 0 0
\(569\) 12.9112 + 43.9715i 0.541266 + 1.84338i 0.537303 + 0.843389i \(0.319443\pi\)
0.00396223 + 0.999992i \(0.498739\pi\)
\(570\) 0 0
\(571\) 11.4841 + 3.37204i 0.480595 + 0.141115i 0.513052 0.858358i \(-0.328515\pi\)
−0.0324565 + 0.999473i \(0.510333\pi\)
\(572\) 0 0
\(573\) 2.40270 + 0.345456i 0.100374 + 0.0144316i
\(574\) 0 0
\(575\) 9.09381 + 2.15219i 0.379238 + 0.0897527i
\(576\) 0 0
\(577\) −3.29784 + 22.9369i −0.137291 + 0.954878i 0.798418 + 0.602104i \(0.205671\pi\)
−0.935709 + 0.352774i \(0.885238\pi\)
\(578\) 0 0
\(579\) 0.0469838 0.160012i 0.00195258 0.00664988i
\(580\) 0 0
\(581\) −33.0635 + 9.70832i −1.37171 + 0.402769i
\(582\) 0 0
\(583\) 7.33833 + 3.35130i 0.303922 + 0.138797i
\(584\) 0 0
\(585\) 11.1727 + 17.3850i 0.461934 + 0.718783i
\(586\) 0 0
\(587\) −11.2753 + 1.62114i −0.465381 + 0.0669117i −0.371017 0.928626i \(-0.620991\pi\)
−0.0943641 + 0.995538i \(0.530082\pi\)
\(588\) 0 0
\(589\) 13.7440 + 11.9092i 0.566311 + 0.490712i
\(590\) 0 0
\(591\) 0.799078 1.24339i 0.0328697 0.0511462i
\(592\) 0 0
\(593\) −3.92550 4.53027i −0.161201 0.186036i 0.669403 0.742900i \(-0.266550\pi\)
−0.830604 + 0.556864i \(0.812005\pi\)
\(594\) 0 0
\(595\) 7.44740 + 16.3075i 0.305314 + 0.668543i
\(596\) 0 0
\(597\) 1.26157i 0.0516327i
\(598\) 0 0
\(599\) 8.44243i 0.344948i −0.985014 0.172474i \(-0.944824\pi\)
0.985014 0.172474i \(-0.0551761\pi\)
\(600\) 0 0
\(601\) −7.27392 15.9277i −0.296709 0.649703i 0.701293 0.712873i \(-0.252606\pi\)
−0.998003 + 0.0631699i \(0.979879\pi\)
\(602\) 0 0
\(603\) 5.49271 + 6.33892i 0.223680 + 0.258141i
\(604\) 0 0
\(605\) −6.37844 + 9.92505i −0.259321 + 0.403511i
\(606\) 0 0
\(607\) −5.93429 5.14209i −0.240865 0.208711i 0.526060 0.850448i \(-0.323669\pi\)
−0.766925 + 0.641737i \(0.778214\pi\)
\(608\) 0 0
\(609\) −0.627300 + 0.0901921i −0.0254195 + 0.00365477i
\(610\) 0 0
\(611\) −8.14689 12.6768i −0.329588 0.512849i
\(612\) 0 0
\(613\) −41.3412 18.8799i −1.66975 0.762551i −0.999797 0.0201509i \(-0.993585\pi\)
−0.669957 0.742400i \(-0.733687\pi\)
\(614\) 0 0
\(615\) 2.30810 0.677719i 0.0930715 0.0273283i
\(616\) 0 0
\(617\) 8.52953 29.0489i 0.343386 1.16947i −0.589040 0.808104i \(-0.700494\pi\)
0.932426 0.361362i \(-0.117688\pi\)
\(618\) 0 0
\(619\) −1.27237 + 8.84949i −0.0511407 + 0.355691i 0.948143 + 0.317844i \(0.102959\pi\)
−0.999284 + 0.0378468i \(0.987950\pi\)
\(620\) 0 0
\(621\) 3.13850 + 1.23609i 0.125944 + 0.0496024i
\(622\) 0 0
\(623\) −27.7938 3.99615i −1.11354 0.160102i
\(624\) 0 0
\(625\) 10.9960 + 3.22872i 0.439840 + 0.129149i
\(626\) 0 0
\(627\) −0.160816 0.547690i −0.00642238 0.0218726i
\(628\) 0 0
\(629\) −10.6385 + 23.2952i −0.424186 + 0.928839i
\(630\) 0 0
\(631\) −13.2886 + 8.54007i −0.529011 + 0.339975i −0.777728 0.628601i \(-0.783628\pi\)
0.248716 + 0.968576i \(0.419991\pi\)
\(632\) 0 0
\(633\) −0.191502 1.33193i −0.00761152 0.0529393i
\(634\) 0 0
\(635\) 6.79830 7.84566i 0.269782 0.311346i
\(636\) 0 0
\(637\) −15.9004 10.2186i −0.629996 0.404874i
\(638\) 0 0
\(639\) 20.1252 17.4386i 0.796142 0.689861i
\(640\) 0 0
\(641\) 12.0461 5.50126i 0.475791 0.217287i −0.163061 0.986616i \(-0.552137\pi\)
0.638852 + 0.769329i \(0.279409\pi\)
\(642\) 0 0
\(643\) 34.1878 1.34824 0.674119 0.738623i \(-0.264524\pi\)
0.674119 + 0.738623i \(0.264524\pi\)
\(644\) 0 0
\(645\) −2.11211 −0.0831642
\(646\) 0 0
\(647\) −18.0980 + 8.26507i −0.711505 + 0.324933i −0.738080 0.674713i \(-0.764267\pi\)
0.0265749 + 0.999647i \(0.491540\pi\)
\(648\) 0 0
\(649\) −8.48951 + 7.35621i −0.333243 + 0.288756i
\(650\) 0 0
\(651\) 2.61583 + 1.68109i 0.102523 + 0.0658872i
\(652\) 0 0
\(653\) −23.0306 + 26.5787i −0.901257 + 1.04011i 0.0977351 + 0.995212i \(0.468840\pi\)
−0.998992 + 0.0448932i \(0.985705\pi\)
\(654\) 0 0
\(655\) 0.871756 + 6.06320i 0.0340623 + 0.236909i
\(656\) 0 0
\(657\) −19.6056 + 12.5997i −0.764886 + 0.491562i
\(658\) 0 0
\(659\) −14.8013 + 32.4104i −0.576578 + 1.26253i 0.366642 + 0.930362i \(0.380507\pi\)
−0.943220 + 0.332168i \(0.892220\pi\)
\(660\) 0 0
\(661\) −2.85669 9.72901i −0.111113 0.378415i 0.885096 0.465408i \(-0.154092\pi\)
−0.996209 + 0.0869932i \(0.972274\pi\)
\(662\) 0 0
\(663\) −1.33600 0.392285i −0.0518860 0.0152351i
\(664\) 0 0
\(665\) −13.9859 2.01087i −0.542351 0.0779783i
\(666\) 0 0
\(667\) −1.46841 7.39537i −0.0568572 0.286350i
\(668\) 0 0
\(669\) −0.422241 + 2.93675i −0.0163248 + 0.113541i
\(670\) 0 0
\(671\) 1.11865 3.80977i 0.0431850 0.147075i
\(672\) 0 0
\(673\) 32.3571 9.50091i 1.24728 0.366233i 0.409531 0.912296i \(-0.365692\pi\)
0.837744 + 0.546063i \(0.183874\pi\)
\(674\) 0 0
\(675\) −1.24667 0.569337i −0.0479845 0.0219138i
\(676\) 0 0
\(677\) −10.6410 16.5578i −0.408969 0.636368i 0.574275 0.818662i \(-0.305284\pi\)
−0.983244 + 0.182295i \(0.941648\pi\)
\(678\) 0 0
\(679\) 0.613164 0.0881596i 0.0235311 0.00338326i
\(680\) 0 0
\(681\) −0.506273 0.438688i −0.0194004 0.0168106i
\(682\) 0 0
\(683\) 15.7767 24.5490i 0.603678 0.939342i −0.396099 0.918208i \(-0.629636\pi\)
0.999777 0.0211335i \(-0.00672751\pi\)
\(684\) 0 0
\(685\) −16.6376 19.2009i −0.635692 0.733627i
\(686\) 0 0
\(687\) 0.667602 + 1.46184i 0.0254706 + 0.0557728i
\(688\) 0 0
\(689\) 15.5101i 0.590888i
\(690\) 0 0
\(691\) 3.82254i 0.145416i −0.997353 0.0727082i \(-0.976836\pi\)
0.997353 0.0727082i \(-0.0231642\pi\)
\(692\) 0 0
\(693\) 8.77002 + 19.2037i 0.333146 + 0.729487i
\(694\) 0 0
\(695\) −5.10514 5.89164i −0.193649 0.223483i
\(696\) 0 0
\(697\) 18.9546 29.4940i 0.717958 1.11716i
\(698\) 0 0
\(699\) −0.477245 0.413536i −0.0180511 0.0156414i
\(700\) 0 0
\(701\) 41.0831 5.90686i 1.55169 0.223099i 0.687469 0.726214i \(-0.258722\pi\)
0.864220 + 0.503115i \(0.167813\pi\)
\(702\) 0 0
\(703\) −10.9124 16.9800i −0.411569 0.640414i
\(704\) 0 0
\(705\) −0.710136 0.324308i −0.0267453 0.0122142i
\(706\) 0 0
\(707\) −0.385648 + 0.113236i −0.0145038 + 0.00425870i
\(708\) 0 0
\(709\) 8.92143 30.3836i 0.335051 1.14108i −0.603909 0.797054i \(-0.706391\pi\)
0.938960 0.344027i \(-0.111791\pi\)
\(710\) 0 0
\(711\) 1.50106 10.4401i 0.0562941 0.391534i
\(712\) 0 0
\(713\) −18.3166 + 32.1403i −0.685961 + 1.20366i
\(714\) 0 0
\(715\) 14.1151 + 2.02944i 0.527873 + 0.0758967i
\(716\) 0 0
\(717\) 2.98252 + 0.875747i 0.111384 + 0.0327054i
\(718\) 0 0
\(719\) 5.56102 + 18.9391i 0.207391 + 0.706309i 0.995833 + 0.0911993i \(0.0290700\pi\)
−0.788442 + 0.615110i \(0.789112\pi\)
\(720\) 0 0
\(721\) 21.1365 46.2824i 0.787164 1.72365i
\(722\) 0 0
\(723\) −2.08336 + 1.33889i −0.0774810 + 0.0497940i
\(724\) 0 0
\(725\) 0.435973 + 3.03226i 0.0161916 + 0.112615i
\(726\) 0 0
\(727\) 7.98857 9.21930i 0.296280 0.341925i −0.588019 0.808847i \(-0.700092\pi\)
0.884298 + 0.466922i \(0.154637\pi\)
\(728\) 0 0
\(729\) 22.0891 + 14.1958i 0.818115 + 0.525771i
\(730\) 0 0
\(731\) −23.2642 + 20.1585i −0.860457 + 0.745590i
\(732\) 0 0
\(733\) −0.521302 + 0.238070i −0.0192547 + 0.00879333i −0.425019 0.905184i \(-0.639733\pi\)
0.405764 + 0.913978i \(0.367005\pi\)
\(734\) 0 0
\(735\) −0.979206 −0.0361185
\(736\) 0 0
\(737\) 5.78782 0.213197
\(738\) 0 0
\(739\) 28.6453 13.0819i 1.05373 0.481224i 0.188229 0.982125i \(-0.439725\pi\)
0.865505 + 0.500901i \(0.166998\pi\)
\(740\) 0 0
\(741\) 0.829382 0.718663i 0.0304681 0.0264008i
\(742\) 0 0
\(743\) 20.6339 + 13.2606i 0.756983 + 0.486483i 0.861323 0.508058i \(-0.169637\pi\)
−0.104340 + 0.994542i \(0.533273\pi\)
\(744\) 0 0
\(745\) 6.02094 6.94853i 0.220590 0.254575i
\(746\) 0 0
\(747\) 4.26845 + 29.6877i 0.156174 + 1.08622i
\(748\) 0 0
\(749\) 47.9557 30.8193i 1.75226 1.12611i
\(750\) 0 0
\(751\) −2.51237 + 5.50132i −0.0916777 + 0.200746i −0.949916 0.312505i \(-0.898832\pi\)
0.858238 + 0.513251i \(0.171559\pi\)
\(752\) 0 0
\(753\) −0.911969 3.10588i −0.0332340 0.113185i
\(754\) 0 0
\(755\) 27.5967 + 8.10312i 1.00435 + 0.294903i
\(756\) 0 0
\(757\) 29.1174 + 4.18645i 1.05829 + 0.152159i 0.649418 0.760432i \(-0.275013\pi\)
0.408873 + 0.912591i \(0.365922\pi\)
\(758\) 0 0
\(759\) 1.02905 0.537840i 0.0373521 0.0195223i
\(760\) 0 0
\(761\) 1.70128 11.8326i 0.0616712 0.428933i −0.935472 0.353401i \(-0.885025\pi\)
0.997143 0.0755323i \(-0.0240656\pi\)
\(762\) 0 0
\(763\) 11.2784 38.4107i 0.408305 1.39056i
\(764\) 0 0
\(765\) 14.9719 4.39615i 0.541310 0.158943i
\(766\) 0 0
\(767\) −19.6451 8.97162i −0.709344 0.323946i
\(768\) 0 0
\(769\) −21.4693 33.4068i −0.774201 1.20468i −0.974377 0.224921i \(-0.927788\pi\)
0.200176 0.979760i \(-0.435849\pi\)
\(770\) 0 0
\(771\) 0.783250 0.112614i 0.0282081 0.00405571i
\(772\) 0 0
\(773\) 0.683625 + 0.592365i 0.0245883 + 0.0213059i 0.667068 0.744997i \(-0.267549\pi\)
−0.642480 + 0.766303i \(0.722094\pi\)
\(774\) 0 0
\(775\) 8.12611 12.6445i 0.291898 0.454203i
\(776\) 0 0
\(777\) −2.26000 2.60818i −0.0810771 0.0935680i
\(778\) 0 0
\(779\) 11.4789 + 25.1353i 0.411274 + 0.900565i
\(780\) 0 0
\(781\) 18.3756i 0.657529i
\(782\) 0 0
\(783\) 1.10577i 0.0395169i
\(784\) 0 0
\(785\) −5.83894 12.7855i −0.208401 0.456334i
\(786\) 0 0
\(787\) 35.4591 + 40.9219i 1.26398 + 1.45871i 0.829977 + 0.557798i \(0.188354\pi\)
0.434003 + 0.900912i \(0.357101\pi\)
\(788\) 0 0
\(789\) 0.149347 0.232388i 0.00531689 0.00827324i
\(790\) 0 0
\(791\) 6.47298 + 5.60887i 0.230153 + 0.199428i
\(792\) 0 0
\(793\) 7.55610 1.08640i 0.268325 0.0385793i
\(794\) 0 0
\(795\) 0.434427 + 0.675981i 0.0154075 + 0.0239746i
\(796\) 0 0
\(797\) 12.3929 + 5.65963i 0.438978 + 0.200474i 0.622629 0.782517i \(-0.286065\pi\)
−0.183652 + 0.982991i \(0.558792\pi\)
\(798\) 0 0
\(799\) −10.9172 + 3.20558i −0.386223 + 0.113405i
\(800\) 0 0
\(801\) −6.88559 + 23.4502i −0.243290 + 0.828571i
\(802\) 0 0
\(803\) −2.28865 + 15.9179i −0.0807648 + 0.561731i
\(804\) 0 0
\(805\) −1.52863 28.7016i −0.0538773 1.01160i
\(806\) 0 0
\(807\) −1.02574 0.147480i −0.0361079 0.00519153i
\(808\) 0 0
\(809\) −14.6083 4.28939i −0.513601 0.150807i 0.0146541 0.999893i \(-0.495335\pi\)
−0.528255 + 0.849086i \(0.677153\pi\)
\(810\) 0 0
\(811\) −2.78682 9.49103i −0.0978585 0.333275i 0.895983 0.444089i \(-0.146473\pi\)
−0.993841 + 0.110814i \(0.964654\pi\)
\(812\) 0 0
\(813\) −0.397121 + 0.869574i −0.0139276 + 0.0304973i
\(814\) 0 0
\(815\) 33.0354 21.2306i 1.15718 0.743675i
\(816\) 0 0
\(817\) −3.45280 24.0148i −0.120798 0.840171i
\(818\) 0 0
\(819\) −26.5798 + 30.6747i −0.928772 + 1.07186i
\(820\) 0 0
\(821\) 2.23257 + 1.43479i 0.0779173 + 0.0500744i 0.579019 0.815314i \(-0.303436\pi\)
−0.501102 + 0.865388i \(0.667072\pi\)
\(822\) 0 0
\(823\) −25.7224 + 22.2886i −0.896628 + 0.776933i −0.975511 0.219951i \(-0.929410\pi\)
0.0788827 + 0.996884i \(0.474865\pi\)
\(824\) 0 0
\(825\) −0.429139 + 0.195981i −0.0149407 + 0.00682318i
\(826\) 0 0
\(827\) −10.0459 −0.349329 −0.174664 0.984628i \(-0.555884\pi\)
−0.174664 + 0.984628i \(0.555884\pi\)
\(828\) 0 0
\(829\) −17.5669 −0.610125 −0.305062 0.952332i \(-0.598677\pi\)
−0.305062 + 0.952332i \(0.598677\pi\)
\(830\) 0 0
\(831\) 0.00908949 0.00415103i 0.000315311 0.000143998i
\(832\) 0 0
\(833\) −10.7856 + 9.34580i −0.373700 + 0.323813i
\(834\) 0 0
\(835\) 26.1926 + 16.8329i 0.906431 + 0.582528i
\(836\) 0 0
\(837\) 3.55286 4.10021i 0.122805 0.141724i
\(838\) 0 0
\(839\) −6.36234 44.2510i −0.219652 1.52772i −0.739324 0.673350i \(-0.764855\pi\)
0.519672 0.854366i \(-0.326054\pi\)
\(840\) 0 0
\(841\) −22.3171 + 14.3423i −0.769554 + 0.494563i
\(842\) 0 0
\(843\) 0.889645 1.94805i 0.0306410 0.0670944i
\(844\) 0 0
\(845\) 1.32626 + 4.51681i 0.0456246 + 0.155383i
\(846\) 0 0
\(847\) −22.2332 6.52825i −0.763941 0.224313i
\(848\) 0 0
\(849\) −2.28690 0.328807i −0.0784862 0.0112846i
\(850\) 0 0
\(851\) 29.5557 28.4995i 1.01316 0.976951i
\(852\) 0 0
\(853\) 2.14980 14.9522i 0.0736079 0.511954i −0.919346 0.393451i \(-0.871281\pi\)
0.992954 0.118504i \(-0.0378097\pi\)
\(854\) 0 0
\(855\) −3.46485 + 11.8002i −0.118495 + 0.403558i
\(856\) 0 0
\(857\) 12.4399 3.65269i 0.424939 0.124773i −0.0622685 0.998059i \(-0.519834\pi\)
0.487208 + 0.873286i \(0.338015\pi\)
\(858\) 0 0
\(859\) −17.0018 7.76444i −0.580093 0.264919i 0.103685 0.994610i \(-0.466937\pi\)
−0.683777 + 0.729691i \(0.739664\pi\)
\(860\) 0 0
\(861\) 2.55432 + 3.97460i 0.0870509 + 0.135454i
\(862\) 0 0
\(863\) −15.3396 + 2.20550i −0.522166 + 0.0750762i −0.398358 0.917230i \(-0.630420\pi\)
−0.123808 + 0.992306i \(0.539511\pi\)
\(864\) 0 0
\(865\) −29.5870 25.6373i −1.00599 0.871694i
\(866\) 0 0
\(867\) 0.511478 0.795876i 0.0173707 0.0270294i
\(868\) 0 0
\(869\) −4.76622 5.50051i −0.161683 0.186592i
\(870\) 0 0
\(871\) 4.62254 + 10.1219i 0.156629 + 0.342969i
\(872\) 0 0
\(873\) 0.539179i 0.0182484i
\(874\) 0 0
\(875\) 41.6440i 1.40782i
\(876\) 0 0
\(877\) 10.0439 + 21.9931i 0.339160 + 0.742656i 0.999969 0.00789806i \(-0.00251406\pi\)
−0.660809 + 0.750554i \(0.729787\pi\)
\(878\) 0 0
\(879\) −0.807283 0.931654i −0.0272290 0.0314239i
\(880\) 0 0
\(881\) −14.5573 + 22.6517i −0.490449 + 0.763154i −0.994962 0.100250i \(-0.968036\pi\)
0.504513 + 0.863404i \(0.331672\pi\)
\(882\) 0 0
\(883\) 17.6976 + 15.3351i 0.595573 + 0.516067i 0.899668 0.436575i \(-0.143809\pi\)
−0.304095 + 0.952642i \(0.598354\pi\)
\(884\) 0 0
\(885\) −1.10749 + 0.159233i −0.0372277 + 0.00535254i
\(886\) 0 0
\(887\) 6.33778 + 9.86178i 0.212802 + 0.331126i 0.931202 0.364504i \(-0.118762\pi\)
−0.718400 + 0.695630i \(0.755125\pi\)
\(888\) 0 0
\(889\) 18.5469 + 8.47008i 0.622042 + 0.284077i
\(890\) 0 0
\(891\) 17.5490 5.15284i 0.587913 0.172627i
\(892\) 0 0
\(893\) 2.52649 8.60445i 0.0845459 0.287937i
\(894\) 0 0
\(895\) 5.83486 40.5823i 0.195038 1.35652i
\(896\) 0 0
\(897\) 1.76246 + 1.37009i 0.0588469 + 0.0457458i
\(898\) 0 0
\(899\) −12.0035 1.72584i −0.400338 0.0575600i
\(900\) 0 0
\(901\) 11.2368 + 3.29943i 0.374353 + 0.109920i
\(902\) 0 0
\(903\) −1.16871 3.98026i −0.0388923 0.132455i
\(904\) 0 0
\(905\) 17.3113 37.9065i 0.575448 1.26006i
\(906\) 0 0
\(907\) 7.47865 4.80624i 0.248325 0.159588i −0.410558 0.911835i \(-0.634666\pi\)
0.658882 + 0.752246i \(0.271030\pi\)
\(908\) 0 0
\(909\) 0.0497866 + 0.346273i 0.00165132 + 0.0114852i
\(910\) 0 0
\(911\) −4.09127 + 4.72158i −0.135550 + 0.156433i −0.819466 0.573128i \(-0.805730\pi\)
0.683916 + 0.729561i \(0.260275\pi\)
\(912\) 0 0
\(913\) 17.4110 + 11.1894i 0.576221 + 0.370314i
\(914\) 0 0
\(915\) 0.298890 0.258990i 0.00988100 0.00856194i
\(916\) 0 0
\(917\) −10.9437 + 4.99782i −0.361393 + 0.165043i
\(918\) 0 0
\(919\) 44.4385 1.46589 0.732945 0.680288i \(-0.238145\pi\)
0.732945 + 0.680288i \(0.238145\pi\)
\(920\) 0 0
\(921\) 0.408875 0.0134729
\(922\) 0 0
\(923\) 32.1358 14.6759i 1.05776 0.483065i
\(924\) 0 0
\(925\) −12.6075 + 10.9244i −0.414532 + 0.359194i
\(926\) 0 0
\(927\) −37.2555 23.9427i −1.22363 0.786380i
\(928\) 0 0
\(929\) 31.2517 36.0664i 1.02534 1.18330i 0.0424483 0.999099i \(-0.486484\pi\)
0.982888 0.184203i \(-0.0589703\pi\)
\(930\) 0 0
\(931\) −1.60077 11.1336i −0.0524632 0.364890i
\(932\) 0 0
\(933\) 2.39422 1.53867i 0.0783834 0.0503739i
\(934\) 0 0
\(935\) 4.47296 9.79441i 0.146281 0.320311i
\(936\) 0 0
\(937\) −6.33560 21.5771i −0.206975 0.704892i −0.995905 0.0904086i \(-0.971183\pi\)
0.788930 0.614483i \(-0.210635\pi\)
\(938\) 0 0
\(939\) 0.142374 + 0.0418049i 0.00464621 + 0.00136425i
\(940\) 0 0
\(941\) 3.89577 + 0.560127i 0.126998 + 0.0182596i 0.205521 0.978653i \(-0.434111\pi\)
−0.0785225 + 0.996912i \(0.525020\pi\)
\(942\) 0 0
\(943\) −45.6028 + 32.8607i −1.48503 + 1.07009i
\(944\) 0 0
\(945\) −0.599899 + 4.17239i −0.0195147 + 0.135728i
\(946\) 0 0
\(947\) −14.6947 + 50.0455i −0.477513 + 1.62626i 0.270602 + 0.962691i \(0.412777\pi\)
−0.748115 + 0.663569i \(0.769041\pi\)
\(948\) 0 0
\(949\) −29.6657 + 8.71065i −0.962990 + 0.282760i
\(950\) 0 0
\(951\) 2.56352 + 1.17072i 0.0831278 + 0.0379632i
\(952\) 0 0
\(953\) 27.2605 + 42.4182i 0.883054 + 1.37406i 0.927014 + 0.375026i \(0.122366\pi\)
−0.0439598 + 0.999033i \(0.513997\pi\)
\(954\) 0 0
\(955\) −35.7216 + 5.13599i −1.15592 + 0.166197i
\(956\) 0 0
\(957\) 0.287665 + 0.249263i 0.00929887 + 0.00805752i
\(958\) 0 0
\(959\) 26.9777 41.9781i 0.871156 1.35555i
\(960\) 0 0
\(961\) 18.6634 + 21.5387i 0.602044 + 0.694796i
\(962\) 0 0
\(963\) −20.6114 45.1328i −0.664194 1.45438i
\(964\) 0 0
\(965\) 2.47938i 0.0798140i
\(966\) 0 0
\(967\) 3.03743i 0.0976771i −0.998807 0.0488385i \(-0.984448\pi\)
0.998807 0.0488385i \(-0.0155520\pi\)
\(968\) 0 0
\(969\) −0.344227 0.753753i −0.0110582 0.0242140i
\(970\) 0 0
\(971\) 0.183013 + 0.211208i 0.00587316 + 0.00677798i 0.758679 0.651465i \(-0.225845\pi\)
−0.752805 + 0.658243i \(0.771300\pi\)
\(972\) 0 0
\(973\) 8.27791 12.8807i 0.265378 0.412936i
\(974\) 0 0
\(975\) −0.685478 0.593970i −0.0219529 0.0190223i
\(976\) 0 0
\(977\) −31.1017 + 4.47175i −0.995033 + 0.143064i −0.620547 0.784169i \(-0.713090\pi\)
−0.374485 + 0.927233i \(0.622180\pi\)
\(978\) 0 0
\(979\) 9.11780 + 14.1876i 0.291406 + 0.453437i
\(980\) 0 0
\(981\) −31.6949 14.4746i −1.01194 0.462137i
\(982\) 0 0
\(983\) −18.0776 + 5.30806i −0.576585 + 0.169301i −0.557007 0.830508i \(-0.688050\pi\)
−0.0195781 + 0.999808i \(0.506232\pi\)
\(984\) 0 0
\(985\) −6.19083 + 21.0840i −0.197256 + 0.671793i
\(986\) 0 0
\(987\) 0.218213 1.51770i 0.00694578 0.0483090i
\(988\) 0 0
\(989\) 46.5468 16.4029i 1.48010 0.521583i
\(990\) 0 0
\(991\) 19.6292 + 2.82225i 0.623541 + 0.0896516i 0.446841 0.894613i \(-0.352549\pi\)
0.176699 + 0.984265i \(0.443458\pi\)
\(992\) 0 0
\(993\) 3.46030 + 1.01604i 0.109809 + 0.0322429i
\(994\) 0 0
\(995\) −5.28421 17.9964i −0.167521 0.570523i
\(996\) 0 0
\(997\) −18.6659 + 40.8727i −0.591156 + 1.29445i 0.343586 + 0.939121i \(0.388358\pi\)
−0.934741 + 0.355329i \(0.884369\pi\)
\(998\) 0 0
\(999\) −5.06562 + 3.25547i −0.160269 + 0.102999i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 368.2.s.b.15.5 yes 80
4.3 odd 2 inner 368.2.s.b.15.4 80
23.20 odd 22 inner 368.2.s.b.319.4 yes 80
92.43 even 22 inner 368.2.s.b.319.5 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
368.2.s.b.15.4 80 4.3 odd 2 inner
368.2.s.b.15.5 yes 80 1.1 even 1 trivial
368.2.s.b.319.4 yes 80 23.20 odd 22 inner
368.2.s.b.319.5 yes 80 92.43 even 22 inner