L(s) = 1 | + 2-s + 4-s + (−1 + 2i)5-s + (−2 + 2i)7-s + 8-s + 3i·9-s + (−1 + 2i)10-s + 4·13-s + (−2 + 2i)14-s + 16-s + 2i·17-s + 3i·18-s + (−2 − 2i)19-s + (−1 + 2i)20-s + 4·23-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s + (−0.447 + 0.894i)5-s + (−0.755 + 0.755i)7-s + 0.353·8-s + i·9-s + (−0.316 + 0.632i)10-s + 1.10·13-s + (−0.534 + 0.534i)14-s + 0.250·16-s + 0.485i·17-s + 0.707i·18-s + (−0.458 − 0.458i)19-s + (−0.223 + 0.447i)20-s + 0.834·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.309 - 0.950i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.309 - 0.950i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.42359 + 1.03404i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.42359 + 1.03404i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 5 | \( 1 + (1 - 2i)T \) |
| 37 | \( 1 + (1 - 6i)T \) |
good | 3 | \( 1 - 3iT^{2} \) |
| 7 | \( 1 + (2 - 2i)T - 7iT^{2} \) |
| 11 | \( 1 - 11T^{2} \) |
| 13 | \( 1 - 4T + 13T^{2} \) |
| 17 | \( 1 - 2iT - 17T^{2} \) |
| 19 | \( 1 + (2 + 2i)T + 19iT^{2} \) |
| 23 | \( 1 - 4T + 23T^{2} \) |
| 29 | \( 1 + (-7 + 7i)T - 29iT^{2} \) |
| 31 | \( 1 + (4 + 4i)T + 31iT^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 - 4T + 43T^{2} \) |
| 47 | \( 1 + (2 - 2i)T - 47iT^{2} \) |
| 53 | \( 1 + (1 + i)T + 53iT^{2} \) |
| 59 | \( 1 + (2 + 2i)T + 59iT^{2} \) |
| 61 | \( 1 + (-1 - i)T + 61iT^{2} \) |
| 67 | \( 1 + 67iT^{2} \) |
| 71 | \( 1 - 12T + 71T^{2} \) |
| 73 | \( 1 + (-5 + 5i)T - 73iT^{2} \) |
| 79 | \( 1 + (12 + 12i)T + 79iT^{2} \) |
| 83 | \( 1 + (-4 - 4i)T + 83iT^{2} \) |
| 89 | \( 1 + (-7 + 7i)T - 89iT^{2} \) |
| 97 | \( 1 - 12iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.47718013602246003375742552267, −10.91660126747867709884420843737, −10.01220533968639049782248084203, −8.664288034810394084445726496172, −7.72891915311317816813286844699, −6.55237808437988363901969639400, −5.94187678596989010516857676987, −4.56135296400034752490946096296, −3.34807128733237594577014040058, −2.36705659868046913175965849507,
1.03199153426286123389538234781, 3.34486315504660437022090896820, 4.01037918190529780212636860751, 5.23245744764443935254708726779, 6.41684643507938113959068339258, 7.17433757636585765934880539061, 8.514673371182734911046364075142, 9.281916531279392146854246427040, 10.47355051026309155446020727050, 11.34700688141165288944093319966