L(s) = 1 | + 2-s + 4-s + (−1 + 2i)5-s + (−2 + 2i)7-s + 8-s + 3i·9-s + (−1 + 2i)10-s + 4·13-s + (−2 + 2i)14-s + 16-s + 2i·17-s + 3i·18-s + (−2 − 2i)19-s + (−1 + 2i)20-s + 4·23-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s + (−0.447 + 0.894i)5-s + (−0.755 + 0.755i)7-s + 0.353·8-s + i·9-s + (−0.316 + 0.632i)10-s + 1.10·13-s + (−0.534 + 0.534i)14-s + 0.250·16-s + 0.485i·17-s + 0.707i·18-s + (−0.458 − 0.458i)19-s + (−0.223 + 0.447i)20-s + 0.834·23-s + ⋯ |
Λ(s)=(=(370s/2ΓC(s)L(s)(0.309−0.950i)Λ(2−s)
Λ(s)=(=(370s/2ΓC(s+1/2)L(s)(0.309−0.950i)Λ(1−s)
Degree: |
2 |
Conductor: |
370
= 2⋅5⋅37
|
Sign: |
0.309−0.950i
|
Analytic conductor: |
2.95446 |
Root analytic conductor: |
1.71885 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ370(253,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 370, ( :1/2), 0.309−0.950i)
|
Particular Values
L(1) |
≈ |
1.42359+1.03404i |
L(21) |
≈ |
1.42359+1.03404i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 5 | 1+(1−2i)T |
| 37 | 1+(1−6i)T |
good | 3 | 1−3iT2 |
| 7 | 1+(2−2i)T−7iT2 |
| 11 | 1−11T2 |
| 13 | 1−4T+13T2 |
| 17 | 1−2iT−17T2 |
| 19 | 1+(2+2i)T+19iT2 |
| 23 | 1−4T+23T2 |
| 29 | 1+(−7+7i)T−29iT2 |
| 31 | 1+(4+4i)T+31iT2 |
| 41 | 1−41T2 |
| 43 | 1−4T+43T2 |
| 47 | 1+(2−2i)T−47iT2 |
| 53 | 1+(1+i)T+53iT2 |
| 59 | 1+(2+2i)T+59iT2 |
| 61 | 1+(−1−i)T+61iT2 |
| 67 | 1+67iT2 |
| 71 | 1−12T+71T2 |
| 73 | 1+(−5+5i)T−73iT2 |
| 79 | 1+(12+12i)T+79iT2 |
| 83 | 1+(−4−4i)T+83iT2 |
| 89 | 1+(−7+7i)T−89iT2 |
| 97 | 1−12iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.47718013602246003375742552267, −10.91660126747867709884420843737, −10.01220533968639049782248084203, −8.664288034810394084445726496172, −7.72891915311317816813286844699, −6.55237808437988363901969639400, −5.94187678596989010516857676987, −4.56135296400034752490946096296, −3.34807128733237594577014040058, −2.36705659868046913175965849507,
1.03199153426286123389538234781, 3.34486315504660437022090896820, 4.01037918190529780212636860751, 5.23245744764443935254708726779, 6.41684643507938113959068339258, 7.17433757636585765934880539061, 8.514673371182734911046364075142, 9.281916531279392146854246427040, 10.47355051026309155446020727050, 11.34700688141165288944093319966