Properties

Label 370.2.h.a
Level 370370
Weight 22
Character orbit 370.h
Analytic conductor 2.9542.954
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [370,2,Mod(117,370)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(370, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("370.117"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 370=2537 370 = 2 \cdot 5 \cdot 37
Weight: k k == 2 2
Character orbit: [χ][\chi] == 370.h (of order 44, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.954464874792.95446487479
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a9]\Z[a_1, \ldots, a_{9}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+q2+q4+(2i1)q5+(2i2)q7+q8+3iq9+(2i1)q10+4q13+(2i2)q14+q16+2iq17+3iq18+(2i2)q19+(2i1)q20+iq98+O(q100) q + q^{2} + q^{4} + (2 i - 1) q^{5} + (2 i - 2) q^{7} + q^{8} + 3 i q^{9} + (2 i - 1) q^{10} + 4 q^{13} + (2 i - 2) q^{14} + q^{16} + 2 i q^{17} + 3 i q^{18} + ( - 2 i - 2) q^{19} + (2 i - 1) q^{20}+ \cdots - i q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q2+2q42q54q7+2q82q10+8q134q14+2q164q192q20+8q236q25+8q264q28+14q298q31+2q324q35++12q95+O(q100) 2 q + 2 q^{2} + 2 q^{4} - 2 q^{5} - 4 q^{7} + 2 q^{8} - 2 q^{10} + 8 q^{13} - 4 q^{14} + 2 q^{16} - 4 q^{19} - 2 q^{20} + 8 q^{23} - 6 q^{25} + 8 q^{26} - 4 q^{28} + 14 q^{29} - 8 q^{31} + 2 q^{32} - 4 q^{35}+ \cdots + 12 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/370Z)×\left(\mathbb{Z}/370\mathbb{Z}\right)^\times.

nn 261261 297297
χ(n)\chi(n) ii i-i

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
117.1
1.00000i
1.00000i
1.00000 0 1.00000 −1.00000 2.00000i 0 −2.00000 2.00000i 1.00000 3.00000i −1.00000 2.00000i
253.1 1.00000 0 1.00000 −1.00000 + 2.00000i 0 −2.00000 + 2.00000i 1.00000 3.00000i −1.00000 + 2.00000i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
185.k even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 370.2.h.a yes 2
5.c odd 4 1 370.2.g.b 2
37.d odd 4 1 370.2.g.b 2
185.k even 4 1 inner 370.2.h.a yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
370.2.g.b 2 5.c odd 4 1
370.2.g.b 2 37.d odd 4 1
370.2.h.a yes 2 1.a even 1 1 trivial
370.2.h.a yes 2 185.k even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T3 T_{3} acting on S2new(370,[χ])S_{2}^{\mathrm{new}}(370, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T1)2 (T - 1)^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2+2T+5 T^{2} + 2T + 5 Copy content Toggle raw display
77 T2+4T+8 T^{2} + 4T + 8 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 (T4)2 (T - 4)^{2} Copy content Toggle raw display
1717 T2+4 T^{2} + 4 Copy content Toggle raw display
1919 T2+4T+8 T^{2} + 4T + 8 Copy content Toggle raw display
2323 (T4)2 (T - 4)^{2} Copy content Toggle raw display
2929 T214T+98 T^{2} - 14T + 98 Copy content Toggle raw display
3131 T2+8T+32 T^{2} + 8T + 32 Copy content Toggle raw display
3737 T2+2T+37 T^{2} + 2T + 37 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 (T4)2 (T - 4)^{2} Copy content Toggle raw display
4747 T2+4T+8 T^{2} + 4T + 8 Copy content Toggle raw display
5353 T2+2T+2 T^{2} + 2T + 2 Copy content Toggle raw display
5959 T2+4T+8 T^{2} + 4T + 8 Copy content Toggle raw display
6161 T22T+2 T^{2} - 2T + 2 Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 (T12)2 (T - 12)^{2} Copy content Toggle raw display
7373 T210T+50 T^{2} - 10T + 50 Copy content Toggle raw display
7979 T2+24T+288 T^{2} + 24T + 288 Copy content Toggle raw display
8383 T28T+32 T^{2} - 8T + 32 Copy content Toggle raw display
8989 T214T+98 T^{2} - 14T + 98 Copy content Toggle raw display
9797 T2+144 T^{2} + 144 Copy content Toggle raw display
show more
show less