gp: [N,k,chi] = [370,2,Mod(117,370)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(370, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([1, 3]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("370.117");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [2,2,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of i = − 1 i = \sqrt{-1} i = − 1 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 370 Z ) × \left(\mathbb{Z}/370\mathbb{Z}\right)^\times ( Z / 3 7 0 Z ) × .
n n n
261 261 2 6 1
297 297 2 9 7
χ ( n ) \chi(n) χ ( n )
i i i
− i -i − i
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 3 T_{3} T 3
T3
acting on S 2 n e w ( 370 , [ χ ] ) S_{2}^{\mathrm{new}}(370, [\chi]) S 2 n e w ( 3 7 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T − 1 ) 2 (T - 1)^{2} ( T − 1 ) 2
(T - 1)^2
3 3 3
T 2 T^{2} T 2
T^2
5 5 5
T 2 + 2 T + 5 T^{2} + 2T + 5 T 2 + 2 T + 5
T^2 + 2*T + 5
7 7 7
T 2 + 4 T + 8 T^{2} + 4T + 8 T 2 + 4 T + 8
T^2 + 4*T + 8
11 11 1 1
T 2 T^{2} T 2
T^2
13 13 1 3
( T − 4 ) 2 (T - 4)^{2} ( T − 4 ) 2
(T - 4)^2
17 17 1 7
T 2 + 4 T^{2} + 4 T 2 + 4
T^2 + 4
19 19 1 9
T 2 + 4 T + 8 T^{2} + 4T + 8 T 2 + 4 T + 8
T^2 + 4*T + 8
23 23 2 3
( T − 4 ) 2 (T - 4)^{2} ( T − 4 ) 2
(T - 4)^2
29 29 2 9
T 2 − 14 T + 98 T^{2} - 14T + 98 T 2 − 1 4 T + 9 8
T^2 - 14*T + 98
31 31 3 1
T 2 + 8 T + 32 T^{2} + 8T + 32 T 2 + 8 T + 3 2
T^2 + 8*T + 32
37 37 3 7
T 2 + 2 T + 37 T^{2} + 2T + 37 T 2 + 2 T + 3 7
T^2 + 2*T + 37
41 41 4 1
T 2 T^{2} T 2
T^2
43 43 4 3
( T − 4 ) 2 (T - 4)^{2} ( T − 4 ) 2
(T - 4)^2
47 47 4 7
T 2 + 4 T + 8 T^{2} + 4T + 8 T 2 + 4 T + 8
T^2 + 4*T + 8
53 53 5 3
T 2 + 2 T + 2 T^{2} + 2T + 2 T 2 + 2 T + 2
T^2 + 2*T + 2
59 59 5 9
T 2 + 4 T + 8 T^{2} + 4T + 8 T 2 + 4 T + 8
T^2 + 4*T + 8
61 61 6 1
T 2 − 2 T + 2 T^{2} - 2T + 2 T 2 − 2 T + 2
T^2 - 2*T + 2
67 67 6 7
T 2 T^{2} T 2
T^2
71 71 7 1
( T − 12 ) 2 (T - 12)^{2} ( T − 1 2 ) 2
(T - 12)^2
73 73 7 3
T 2 − 10 T + 50 T^{2} - 10T + 50 T 2 − 1 0 T + 5 0
T^2 - 10*T + 50
79 79 7 9
T 2 + 24 T + 288 T^{2} + 24T + 288 T 2 + 2 4 T + 2 8 8
T^2 + 24*T + 288
83 83 8 3
T 2 − 8 T + 32 T^{2} - 8T + 32 T 2 − 8 T + 3 2
T^2 - 8*T + 32
89 89 8 9
T 2 − 14 T + 98 T^{2} - 14T + 98 T 2 − 1 4 T + 9 8
T^2 - 14*T + 98
97 97 9 7
T 2 + 144 T^{2} + 144 T 2 + 1 4 4
T^2 + 144
show more
show less