L(s) = 1 | − 2·2-s − 3·3-s + 4-s − 6·5-s + 6·6-s − 12·7-s + 2·8-s + 2·9-s + 12·10-s − 3·12-s − 5·13-s + 24·14-s + 18·15-s − 4·16-s − 3·17-s − 4·18-s − 6·20-s + 36·21-s − 12·23-s − 6·24-s + 17·25-s + 10·26-s + 3·27-s − 12·28-s − 36·30-s + 2·32-s + 6·34-s + ⋯ |
L(s) = 1 | − 1.41·2-s − 1.73·3-s + 1/2·4-s − 2.68·5-s + 2.44·6-s − 4.53·7-s + 0.707·8-s + 2/3·9-s + 3.79·10-s − 0.866·12-s − 1.38·13-s + 6.41·14-s + 4.64·15-s − 16-s − 0.727·17-s − 0.942·18-s − 1.34·20-s + 7.85·21-s − 2.50·23-s − 1.22·24-s + 17/5·25-s + 1.96·26-s + 0.577·27-s − 2.26·28-s − 6.57·30-s + 0.353·32-s + 1.02·34-s + ⋯ |
Λ(s)=(=((24⋅54⋅374)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((24⋅54⋅374)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
24⋅54⋅374
|
Sign: |
1
|
Analytic conductor: |
76.1930 |
Root analytic conductor: |
1.71885 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
4
|
Selberg data: |
(8, 24⋅54⋅374, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | (1+T+T2)2 |
| 5 | C2 | (1+3T+pT2)2 |
| 37 | C2 | (1−T+pT2)2 |
good | 3 | C2×C22 | (1+T+pT2)2(1+T−2T2+pT3+p2T4) |
| 7 | C2 | (1+T+pT2)2(1+5T+pT2)2 |
| 11 | C2 | (1+pT2)4 |
| 13 | D4×C2 | 1+5T+T2−10T3+82T4−10pT5+p2T6+5p3T7+p4T8 |
| 17 | D4×C2 | 1+3T−19T2−18T3+342T4−18pT5−19p2T6+3p3T7+p4T8 |
| 19 | C22 | (1+pT2+p2T4)2 |
| 23 | D4 | (1+6T+22T2+6pT3+p2T4)2 |
| 29 | D4×C2 | 1−37T2+1620T4−37p2T6+p4T8 |
| 31 | D4×C2 | 1−T2−1716T4−p2T6+p4T8 |
| 41 | C23 | 1−49T2+720T4−49p2T6+p4T8 |
| 43 | D4 | (1+T+12T2+pT3+p2T4)2 |
| 47 | D4×C2 | 1−160T2+10686T4−160p2T6+p4T8 |
| 53 | D4×C2 | 1−9T+137T2−990T3+10722T4−990pT5+137p2T6−9p3T7+p4T8 |
| 59 | D4×C2 | 1+30T+482T2+5460T3+47343T4+5460pT5+482p2T6+30p3T7+p4T8 |
| 61 | D4×C2 | 1+9T+131T2+936T3+8742T4+936pT5+131p2T6+9p3T7+p4T8 |
| 67 | D4×C2 | 1−6T+50T2−228T3−2241T4−228pT5+50p2T6−6p3T7+p4T8 |
| 71 | D4×C2 | 1−6T−82T2+144T3+6327T4+144pT5−82p2T6−6p3T7+p4T8 |
| 73 | C22 | (1−98T2+p2T4)2 |
| 79 | D4×C2 | 1−6T+74T2−372T3−1449T4−372pT5+74p2T6−6p3T7+p4T8 |
| 83 | D4×C2 | 1+24T+362T2+4080T3+37947T4+4080pT5+362p2T6+24p3T7+p4T8 |
| 89 | D4×C2 | 1+39T+809T2+11778T3+128406T4+11778pT5+809p2T6+39p3T7+p4T8 |
| 97 | D4 | (1+7T+132T2+7pT3+p2T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.894512461875042411245339024924, −8.495237136544163940562244010178, −8.201838672917920221575809326230, −8.124948522730085121833255073320, −7.68156597875810815462165669009, −7.54642146519005609743315884400, −7.14638913893938203619892257692, −7.08054401987464178557179478376, −6.89633244033457933420439212749, −6.43710549241103880379807921398, −6.39664827871028382805597708233, −6.11740602243252145076170784437, −5.82907691661979055338889169674, −5.60981092847855310671001524995, −5.34272215297827295424750096398, −4.59102875602102777040626949036, −4.46377013943940548994635233799, −4.35166462100043483663066563548, −3.90912450530183781296641046838, −3.55242703230157424368167477410, −3.36293840380481594562593739434, −3.12616451694725125542948197612, −2.55310379476121640911379277657, −2.40446390556957536163841765474, −1.19940740588260723906817380778, 0, 0, 0, 0,
1.19940740588260723906817380778, 2.40446390556957536163841765474, 2.55310379476121640911379277657, 3.12616451694725125542948197612, 3.36293840380481594562593739434, 3.55242703230157424368167477410, 3.90912450530183781296641046838, 4.35166462100043483663066563548, 4.46377013943940548994635233799, 4.59102875602102777040626949036, 5.34272215297827295424750096398, 5.60981092847855310671001524995, 5.82907691661979055338889169674, 6.11740602243252145076170784437, 6.39664827871028382805597708233, 6.43710549241103880379807921398, 6.89633244033457933420439212749, 7.08054401987464178557179478376, 7.14638913893938203619892257692, 7.54642146519005609743315884400, 7.68156597875810815462165669009, 8.124948522730085121833255073320, 8.201838672917920221575809326230, 8.495237136544163940562244010178, 8.894512461875042411245339024924