Properties

Label 370.2.m.a.249.1
Level $370$
Weight $2$
Character 370.249
Analytic conductor $2.954$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [370,2,Mod(159,370)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(370, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("370.159");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 370 = 2 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 370.m (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.95446487479\)
Analytic rank: \(1\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 249.1
Root \(-1.18614 + 1.26217i\) of defining polynomial
Character \(\chi\) \(=\) 370.249
Dual form 370.2.m.a.159.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-2.18614 + 1.26217i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-1.50000 + 1.65831i) q^{5} -2.52434i q^{6} +(-3.00000 + 1.73205i) q^{7} +1.00000 q^{8} +(1.68614 - 2.92048i) q^{9} +(-0.686141 - 2.12819i) q^{10} +(2.18614 + 1.26217i) q^{12} +(0.186141 + 0.322405i) q^{13} -3.46410i q^{14} +(1.18614 - 5.51856i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(0.686141 - 1.18843i) q^{17} +(1.68614 + 2.92048i) q^{18} +(2.18614 + 0.469882i) q^{20} +(4.37228 - 7.57301i) q^{21} +2.74456 q^{23} +(-2.18614 + 1.26217i) q^{24} +(-0.500000 - 4.97494i) q^{25} -0.372281 q^{26} +0.939764i q^{27} +(3.00000 + 1.73205i) q^{28} -7.72049i q^{29} +(4.18614 + 3.78651i) q^{30} +11.0371i q^{31} +(-0.500000 - 0.866025i) q^{32} +(0.686141 + 1.18843i) q^{34} +(1.62772 - 7.57301i) q^{35} -3.37228 q^{36} +(0.500000 - 6.06218i) q^{37} +(-0.813859 - 0.469882i) q^{39} +(-1.50000 + 1.65831i) q^{40} +(2.87228 + 4.97494i) q^{41} +(4.37228 + 7.57301i) q^{42} -9.11684 q^{43} +(2.31386 + 7.17687i) q^{45} +(-1.37228 + 2.37686i) q^{46} -5.04868i q^{47} -2.52434i q^{48} +(2.50000 - 4.33013i) q^{49} +(4.55842 + 2.05446i) q^{50} +3.46410i q^{51} +(0.186141 - 0.322405i) q^{52} +(0.813859 + 0.469882i) q^{53} +(-0.813859 - 0.469882i) q^{54} +(-3.00000 + 1.73205i) q^{56} +(6.68614 + 3.86025i) q^{58} +(-10.3723 - 5.98844i) q^{59} +(-5.37228 + 1.73205i) q^{60} +(2.05842 - 1.18843i) q^{61} +(-9.55842 - 5.51856i) q^{62} +11.6819i q^{63} +1.00000 q^{64} +(-0.813859 - 0.174928i) q^{65} +(-7.11684 + 4.10891i) q^{67} -1.37228 q^{68} +(-6.00000 + 3.46410i) q^{69} +(5.74456 + 5.19615i) q^{70} +(-1.37228 - 2.37686i) q^{71} +(1.68614 - 2.92048i) q^{72} +6.92820i q^{73} +(5.00000 + 3.46410i) q^{74} +(7.37228 + 10.2448i) q^{75} +(0.813859 - 0.469882i) q^{78} +(-7.11684 + 4.10891i) q^{79} +(-0.686141 - 2.12819i) q^{80} +(3.87228 + 6.70699i) q^{81} -5.74456 q^{82} +(-11.7446 - 6.78073i) q^{83} -8.74456 q^{84} +(0.941578 + 2.92048i) q^{85} +(4.55842 - 7.89542i) q^{86} +(9.74456 + 16.8781i) q^{87} +(-8.31386 - 4.80001i) q^{89} +(-7.37228 - 1.58457i) q^{90} +(-1.11684 - 0.644810i) q^{91} +(-1.37228 - 2.37686i) q^{92} +(-13.9307 - 24.1287i) q^{93} +(4.37228 + 2.52434i) q^{94} +(2.18614 + 1.26217i) q^{96} -12.1168 q^{97} +(2.50000 + 4.33013i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 3 q^{3} - 2 q^{4} - 6 q^{5} - 12 q^{7} + 4 q^{8} + q^{9} + 3 q^{10} + 3 q^{12} - 5 q^{13} - q^{15} - 2 q^{16} - 3 q^{17} + q^{18} + 3 q^{20} + 6 q^{21} - 12 q^{23} - 3 q^{24} - 2 q^{25}+ \cdots + 10 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/370\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) −2.18614 + 1.26217i −1.26217 + 0.728714i −0.973494 0.228714i \(-0.926548\pi\)
−0.288675 + 0.957427i \(0.593215\pi\)
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −1.50000 + 1.65831i −0.670820 + 0.741620i
\(6\) 2.52434i 1.03056i
\(7\) −3.00000 + 1.73205i −1.13389 + 0.654654i −0.944911 0.327327i \(-0.893852\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.68614 2.92048i 0.562047 0.973494i
\(10\) −0.686141 2.12819i −0.216977 0.672994i
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 2.18614 + 1.26217i 0.631084 + 0.364357i
\(13\) 0.186141 + 0.322405i 0.0516261 + 0.0894191i 0.890684 0.454624i \(-0.150226\pi\)
−0.839057 + 0.544043i \(0.816893\pi\)
\(14\) 3.46410i 0.925820i
\(15\) 1.18614 5.51856i 0.306260 1.42489i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0.686141 1.18843i 0.166414 0.288237i −0.770743 0.637146i \(-0.780115\pi\)
0.937156 + 0.348910i \(0.113448\pi\)
\(18\) 1.68614 + 2.92048i 0.397427 + 0.688364i
\(19\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(20\) 2.18614 + 0.469882i 0.488836 + 0.105069i
\(21\) 4.37228 7.57301i 0.954110 1.65257i
\(22\) 0 0
\(23\) 2.74456 0.572281 0.286140 0.958188i \(-0.407628\pi\)
0.286140 + 0.958188i \(0.407628\pi\)
\(24\) −2.18614 + 1.26217i −0.446244 + 0.257639i
\(25\) −0.500000 4.97494i −0.100000 0.994987i
\(26\) −0.372281 −0.0730104
\(27\) 0.939764i 0.180858i
\(28\) 3.00000 + 1.73205i 0.566947 + 0.327327i
\(29\) 7.72049i 1.43366i −0.697248 0.716830i \(-0.745593\pi\)
0.697248 0.716830i \(-0.254407\pi\)
\(30\) 4.18614 + 3.78651i 0.764281 + 0.691318i
\(31\) 11.0371i 1.98232i 0.132656 + 0.991162i \(0.457650\pi\)
−0.132656 + 0.991162i \(0.542350\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 0.686141 + 1.18843i 0.117672 + 0.203814i
\(35\) 1.62772 7.57301i 0.275135 1.28007i
\(36\) −3.37228 −0.562047
\(37\) 0.500000 6.06218i 0.0821995 0.996616i
\(38\) 0 0
\(39\) −0.813859 0.469882i −0.130322 0.0752413i
\(40\) −1.50000 + 1.65831i −0.237171 + 0.262202i
\(41\) 2.87228 + 4.97494i 0.448575 + 0.776955i 0.998294 0.0583953i \(-0.0185984\pi\)
−0.549719 + 0.835350i \(0.685265\pi\)
\(42\) 4.37228 + 7.57301i 0.674658 + 1.16854i
\(43\) −9.11684 −1.39031 −0.695153 0.718862i \(-0.744663\pi\)
−0.695153 + 0.718862i \(0.744663\pi\)
\(44\) 0 0
\(45\) 2.31386 + 7.17687i 0.344930 + 1.06986i
\(46\) −1.37228 + 2.37686i −0.202332 + 0.350449i
\(47\) 5.04868i 0.736425i −0.929742 0.368213i \(-0.879970\pi\)
0.929742 0.368213i \(-0.120030\pi\)
\(48\) 2.52434i 0.364357i
\(49\) 2.50000 4.33013i 0.357143 0.618590i
\(50\) 4.55842 + 2.05446i 0.644658 + 0.290544i
\(51\) 3.46410i 0.485071i
\(52\) 0.186141 0.322405i 0.0258131 0.0447095i
\(53\) 0.813859 + 0.469882i 0.111792 + 0.0645432i 0.554854 0.831948i \(-0.312774\pi\)
−0.443061 + 0.896491i \(0.646108\pi\)
\(54\) −0.813859 0.469882i −0.110752 0.0639428i
\(55\) 0 0
\(56\) −3.00000 + 1.73205i −0.400892 + 0.231455i
\(57\) 0 0
\(58\) 6.68614 + 3.86025i 0.877933 + 0.506875i
\(59\) −10.3723 5.98844i −1.35036 0.779628i −0.362057 0.932156i \(-0.617925\pi\)
−0.988299 + 0.152528i \(0.951259\pi\)
\(60\) −5.37228 + 1.73205i −0.693559 + 0.223607i
\(61\) 2.05842 1.18843i 0.263554 0.152163i −0.362401 0.932022i \(-0.618043\pi\)
0.625955 + 0.779859i \(0.284709\pi\)
\(62\) −9.55842 5.51856i −1.21392 0.700858i
\(63\) 11.6819i 1.47178i
\(64\) 1.00000 0.125000
\(65\) −0.813859 0.174928i −0.100947 0.0216972i
\(66\) 0 0
\(67\) −7.11684 + 4.10891i −0.869461 + 0.501983i −0.867169 0.498014i \(-0.834063\pi\)
−0.00229183 + 0.999997i \(0.500730\pi\)
\(68\) −1.37228 −0.166414
\(69\) −6.00000 + 3.46410i −0.722315 + 0.417029i
\(70\) 5.74456 + 5.19615i 0.686607 + 0.621059i
\(71\) −1.37228 2.37686i −0.162860 0.282082i 0.773033 0.634365i \(-0.218739\pi\)
−0.935893 + 0.352284i \(0.885405\pi\)
\(72\) 1.68614 2.92048i 0.198714 0.344182i
\(73\) 6.92820i 0.810885i 0.914121 + 0.405442i \(0.132883\pi\)
−0.914121 + 0.405442i \(0.867117\pi\)
\(74\) 5.00000 + 3.46410i 0.581238 + 0.402694i
\(75\) 7.37228 + 10.2448i 0.851278 + 1.18297i
\(76\) 0 0
\(77\) 0 0
\(78\) 0.813859 0.469882i 0.0921514 0.0532036i
\(79\) −7.11684 + 4.10891i −0.800708 + 0.462289i −0.843718 0.536786i \(-0.819638\pi\)
0.0430110 + 0.999075i \(0.486305\pi\)
\(80\) −0.686141 2.12819i −0.0767129 0.237939i
\(81\) 3.87228 + 6.70699i 0.430253 + 0.745221i
\(82\) −5.74456 −0.634381
\(83\) −11.7446 6.78073i −1.28913 0.744281i −0.310634 0.950530i \(-0.600541\pi\)
−0.978500 + 0.206248i \(0.933875\pi\)
\(84\) −8.74456 −0.954110
\(85\) 0.941578 + 2.92048i 0.102128 + 0.316771i
\(86\) 4.55842 7.89542i 0.491547 0.851385i
\(87\) 9.74456 + 16.8781i 1.04473 + 1.80952i
\(88\) 0 0
\(89\) −8.31386 4.80001i −0.881267 0.508800i −0.0101913 0.999948i \(-0.503244\pi\)
−0.871076 + 0.491148i \(0.836577\pi\)
\(90\) −7.37228 1.58457i −0.777107 0.167029i
\(91\) −1.11684 0.644810i −0.117077 0.0675945i
\(92\) −1.37228 2.37686i −0.143070 0.247805i
\(93\) −13.9307 24.1287i −1.44455 2.50203i
\(94\) 4.37228 + 2.52434i 0.450966 + 0.260366i
\(95\) 0 0
\(96\) 2.18614 + 1.26217i 0.223122 + 0.128820i
\(97\) −12.1168 −1.23028 −0.615140 0.788418i \(-0.710900\pi\)
−0.615140 + 0.788418i \(0.710900\pi\)
\(98\) 2.50000 + 4.33013i 0.252538 + 0.437409i
\(99\) 0 0
\(100\) −4.05842 + 2.92048i −0.405842 + 0.292048i
\(101\) 1.37228 0.136547 0.0682735 0.997667i \(-0.478251\pi\)
0.0682735 + 0.997667i \(0.478251\pi\)
\(102\) −3.00000 1.73205i −0.297044 0.171499i
\(103\) 15.4891 1.52619 0.763094 0.646287i \(-0.223679\pi\)
0.763094 + 0.646287i \(0.223679\pi\)
\(104\) 0.186141 + 0.322405i 0.0182526 + 0.0316144i
\(105\) 6.00000 + 18.6101i 0.585540 + 1.81616i
\(106\) −0.813859 + 0.469882i −0.0790490 + 0.0456390i
\(107\) 3.30298 1.90698i 0.319312 0.184355i −0.331774 0.943359i \(-0.607647\pi\)
0.651086 + 0.759004i \(0.274314\pi\)
\(108\) 0.813859 0.469882i 0.0783137 0.0452144i
\(109\) −2.05842 1.18843i −0.197161 0.113831i 0.398170 0.917312i \(-0.369646\pi\)
−0.595331 + 0.803481i \(0.702979\pi\)
\(110\) 0 0
\(111\) 6.55842 + 13.8839i 0.622498 + 1.31780i
\(112\) 3.46410i 0.327327i
\(113\) 10.1168 17.5229i 0.951713 1.64841i 0.209995 0.977702i \(-0.432655\pi\)
0.741718 0.670712i \(-0.234011\pi\)
\(114\) 0 0
\(115\) −4.11684 + 4.55134i −0.383898 + 0.424415i
\(116\) −6.68614 + 3.86025i −0.620793 + 0.358415i
\(117\) 1.25544 0.116065
\(118\) 10.3723 5.98844i 0.954846 0.551281i
\(119\) 4.75372i 0.435773i
\(120\) 1.18614 5.51856i 0.108279 0.503773i
\(121\) −11.0000 −1.00000
\(122\) 2.37686i 0.215191i
\(123\) −12.5584 7.25061i −1.13235 0.653765i
\(124\) 9.55842 5.51856i 0.858372 0.495581i
\(125\) 9.00000 + 6.63325i 0.804984 + 0.593296i
\(126\) −10.1168 5.84096i −0.901280 0.520354i
\(127\) 15.0000 + 8.66025i 1.33103 + 0.768473i 0.985458 0.169917i \(-0.0543501\pi\)
0.345576 + 0.938391i \(0.387683\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 19.9307 11.5070i 1.75480 1.01313i
\(130\) 0.558422 0.617359i 0.0489768 0.0541459i
\(131\) 5.74456 + 3.31662i 0.501905 + 0.289775i 0.729500 0.683981i \(-0.239753\pi\)
−0.227595 + 0.973756i \(0.573086\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 8.21782i 0.709912i
\(135\) −1.55842 1.40965i −0.134128 0.121323i
\(136\) 0.686141 1.18843i 0.0588361 0.101907i
\(137\) 2.67181i 0.228269i −0.993465 0.114134i \(-0.963591\pi\)
0.993465 0.114134i \(-0.0364094\pi\)
\(138\) 6.92820i 0.589768i
\(139\) 9.37228 16.2333i 0.794947 1.37689i −0.127927 0.991784i \(-0.540832\pi\)
0.922873 0.385104i \(-0.125834\pi\)
\(140\) −7.37228 + 2.37686i −0.623071 + 0.200881i
\(141\) 6.37228 + 11.0371i 0.536643 + 0.929493i
\(142\) 2.74456 0.230319
\(143\) 0 0
\(144\) 1.68614 + 2.92048i 0.140512 + 0.243373i
\(145\) 12.8030 + 11.5807i 1.06323 + 0.961728i
\(146\) −6.00000 3.46410i −0.496564 0.286691i
\(147\) 12.6217i 1.04102i
\(148\) −5.50000 + 2.59808i −0.452097 + 0.213561i
\(149\) −10.6277 −0.870657 −0.435328 0.900272i \(-0.643368\pi\)
−0.435328 + 0.900272i \(0.643368\pi\)
\(150\) −12.5584 + 1.26217i −1.02539 + 0.103056i
\(151\) −8.93070 15.4684i −0.726770 1.25880i −0.958241 0.285961i \(-0.907687\pi\)
0.231471 0.972842i \(-0.425646\pi\)
\(152\) 0 0
\(153\) −2.31386 4.00772i −0.187064 0.324005i
\(154\) 0 0
\(155\) −18.3030 16.5557i −1.47013 1.32978i
\(156\) 0.939764i 0.0752413i
\(157\) 5.61684 + 3.24289i 0.448273 + 0.258811i 0.707101 0.707113i \(-0.250003\pi\)
−0.258828 + 0.965924i \(0.583336\pi\)
\(158\) 8.21782i 0.653775i
\(159\) −2.37228 −0.188134
\(160\) 2.18614 + 0.469882i 0.172830 + 0.0371474i
\(161\) −8.23369 + 4.75372i −0.648906 + 0.374646i
\(162\) −7.74456 −0.608470
\(163\) −8.55842 + 14.8236i −0.670347 + 1.16108i 0.307458 + 0.951562i \(0.400522\pi\)
−0.977806 + 0.209514i \(0.932812\pi\)
\(164\) 2.87228 4.97494i 0.224287 0.388477i
\(165\) 0 0
\(166\) 11.7446 6.78073i 0.911555 0.526286i
\(167\) −2.74456 4.75372i −0.212381 0.367854i 0.740078 0.672521i \(-0.234788\pi\)
−0.952459 + 0.304666i \(0.901455\pi\)
\(168\) 4.37228 7.57301i 0.337329 0.584271i
\(169\) 6.43070 11.1383i 0.494669 0.856793i
\(170\) −3.00000 0.644810i −0.230089 0.0494547i
\(171\) 0 0
\(172\) 4.55842 + 7.89542i 0.347576 + 0.602020i
\(173\) 10.5475 + 6.08963i 0.801915 + 0.462986i 0.844140 0.536122i \(-0.180111\pi\)
−0.0422252 + 0.999108i \(0.513445\pi\)
\(174\) −19.4891 −1.47747
\(175\) 10.1168 + 14.0588i 0.764762 + 1.06274i
\(176\) 0 0
\(177\) 30.2337 2.27250
\(178\) 8.31386 4.80001i 0.623150 0.359776i
\(179\) 20.1947i 1.50942i 0.656057 + 0.754711i \(0.272223\pi\)
−0.656057 + 0.754711i \(0.727777\pi\)
\(180\) 5.05842 5.59230i 0.377033 0.416825i
\(181\) 2.43070 + 4.21010i 0.180673 + 0.312934i 0.942110 0.335304i \(-0.108839\pi\)
−0.761437 + 0.648239i \(0.775506\pi\)
\(182\) 1.11684 0.644810i 0.0827860 0.0477965i
\(183\) −3.00000 + 5.19615i −0.221766 + 0.384111i
\(184\) 2.74456 0.202332
\(185\) 9.30298 + 9.92242i 0.683969 + 0.729511i
\(186\) 27.8614 2.04290
\(187\) 0 0
\(188\) −4.37228 + 2.52434i −0.318881 + 0.184106i
\(189\) −1.62772 2.81929i −0.118399 0.205073i
\(190\) 0 0
\(191\) 24.5986i 1.77989i −0.456068 0.889945i \(-0.650743\pi\)
0.456068 0.889945i \(-0.349257\pi\)
\(192\) −2.18614 + 1.26217i −0.157771 + 0.0910892i
\(193\) −6.62772 −0.477074 −0.238537 0.971133i \(-0.576668\pi\)
−0.238537 + 0.971133i \(0.576668\pi\)
\(194\) 6.05842 10.4935i 0.434969 0.753389i
\(195\) 2.00000 0.644810i 0.143223 0.0461758i
\(196\) −5.00000 −0.357143
\(197\) −6.12772 3.53784i −0.436582 0.252061i 0.265565 0.964093i \(-0.414442\pi\)
−0.702147 + 0.712032i \(0.747775\pi\)
\(198\) 0 0
\(199\) 8.86263i 0.628255i 0.949381 + 0.314128i \(0.101712\pi\)
−0.949381 + 0.314128i \(0.898288\pi\)
\(200\) −0.500000 4.97494i −0.0353553 0.351781i
\(201\) 10.3723 17.9653i 0.731604 1.26718i
\(202\) −0.686141 + 1.18843i −0.0482767 + 0.0836177i
\(203\) 13.3723 + 23.1615i 0.938550 + 1.62562i
\(204\) 3.00000 1.73205i 0.210042 0.121268i
\(205\) −12.5584 2.69927i −0.877118 0.188525i
\(206\) −7.74456 + 13.4140i −0.539589 + 0.934596i
\(207\) 4.62772 8.01544i 0.321649 0.557112i
\(208\) −0.372281 −0.0258131
\(209\) 0 0
\(210\) −19.1168 4.10891i −1.31919 0.283542i
\(211\) −15.4891 −1.06632 −0.533158 0.846016i \(-0.678995\pi\)
−0.533158 + 0.846016i \(0.678995\pi\)
\(212\) 0.939764i 0.0645432i
\(213\) 6.00000 + 3.46410i 0.411113 + 0.237356i
\(214\) 3.81396i 0.260717i
\(215\) 13.6753 15.1186i 0.932645 1.03108i
\(216\) 0.939764i 0.0639428i
\(217\) −19.1168 33.1113i −1.29774 2.24774i
\(218\) 2.05842 1.18843i 0.139414 0.0804907i
\(219\) −8.74456 15.1460i −0.590903 1.02347i
\(220\) 0 0
\(221\) 0.510875 0.0343652
\(222\) −15.3030 1.26217i −1.02707 0.0847112i
\(223\) 18.6101i 1.24623i −0.782132 0.623113i \(-0.785868\pi\)
0.782132 0.623113i \(-0.214132\pi\)
\(224\) 3.00000 + 1.73205i 0.200446 + 0.115728i
\(225\) −15.3723 6.92820i −1.02482 0.461880i
\(226\) 10.1168 + 17.5229i 0.672962 + 1.16561i
\(227\) 5.18614 + 8.98266i 0.344216 + 0.596200i 0.985211 0.171345i \(-0.0548113\pi\)
−0.640995 + 0.767545i \(0.721478\pi\)
\(228\) 0 0
\(229\) −4.43070 7.67420i −0.292789 0.507126i 0.681679 0.731651i \(-0.261250\pi\)
−0.974468 + 0.224526i \(0.927917\pi\)
\(230\) −1.88316 5.84096i −0.124172 0.385142i
\(231\) 0 0
\(232\) 7.72049i 0.506875i
\(233\) 14.6487i 0.959668i 0.877359 + 0.479834i \(0.159303\pi\)
−0.877359 + 0.479834i \(0.840697\pi\)
\(234\) −0.627719 + 1.08724i −0.0410353 + 0.0710751i
\(235\) 8.37228 + 7.57301i 0.546147 + 0.494009i
\(236\) 11.9769i 0.779628i
\(237\) 10.3723 17.9653i 0.673752 1.16697i
\(238\) −4.11684 2.37686i −0.266855 0.154069i
\(239\) −8.48913 4.90120i −0.549116 0.317032i 0.199649 0.979867i \(-0.436020\pi\)
−0.748765 + 0.662835i \(0.769353\pi\)
\(240\) 4.18614 + 3.78651i 0.270214 + 0.244418i
\(241\) −18.0000 + 10.3923i −1.15948 + 0.669427i −0.951180 0.308637i \(-0.900127\pi\)
−0.208302 + 0.978065i \(0.566794\pi\)
\(242\) 5.50000 9.52628i 0.353553 0.612372i
\(243\) −19.3723 11.1846i −1.24273 0.717492i
\(244\) −2.05842 1.18843i −0.131777 0.0760815i
\(245\) 3.43070 + 10.6410i 0.219180 + 0.679827i
\(246\) 12.5584 7.25061i 0.800696 0.462282i
\(247\) 0 0
\(248\) 11.0371i 0.700858i
\(249\) 34.2337 2.16947
\(250\) −10.2446 + 4.47760i −0.647923 + 0.283189i
\(251\) 21.7793i 1.37470i −0.726328 0.687348i \(-0.758775\pi\)
0.726328 0.687348i \(-0.241225\pi\)
\(252\) 10.1168 5.84096i 0.637301 0.367946i
\(253\) 0 0
\(254\) −15.0000 + 8.66025i −0.941184 + 0.543393i
\(255\) −5.74456 5.19615i −0.359738 0.325396i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −0.430703 + 0.746000i −0.0268665 + 0.0465342i −0.879146 0.476552i \(-0.841886\pi\)
0.852280 + 0.523087i \(0.175220\pi\)
\(258\) 23.0140i 1.43279i
\(259\) 9.00000 + 19.0526i 0.559233 + 1.18387i
\(260\) 0.255437 + 0.792287i 0.0158416 + 0.0491356i
\(261\) −22.5475 13.0178i −1.39566 0.805784i
\(262\) −5.74456 + 3.31662i −0.354900 + 0.204902i
\(263\) 2.74456 1.58457i 0.169237 0.0977090i −0.412989 0.910736i \(-0.635515\pi\)
0.582226 + 0.813027i \(0.302182\pi\)
\(264\) 0 0
\(265\) −2.00000 + 0.644810i −0.122859 + 0.0396104i
\(266\) 0 0
\(267\) 24.2337 1.48308
\(268\) 7.11684 + 4.10891i 0.434730 + 0.250992i
\(269\) −23.4891 −1.43216 −0.716079 0.698020i \(-0.754065\pi\)
−0.716079 + 0.698020i \(0.754065\pi\)
\(270\) 2.00000 0.644810i 0.121716 0.0392419i
\(271\) −9.18614 + 15.9109i −0.558018 + 0.966516i 0.439644 + 0.898172i \(0.355105\pi\)
−0.997662 + 0.0683437i \(0.978229\pi\)
\(272\) 0.686141 + 1.18843i 0.0416034 + 0.0720592i
\(273\) 3.25544 0.197028
\(274\) 2.31386 + 1.33591i 0.139785 + 0.0807051i
\(275\) 0 0
\(276\) 6.00000 + 3.46410i 0.361158 + 0.208514i
\(277\) −3.50000 6.06218i −0.210295 0.364241i 0.741512 0.670940i \(-0.234109\pi\)
−0.951807 + 0.306699i \(0.900776\pi\)
\(278\) 9.37228 + 16.2333i 0.562112 + 0.973607i
\(279\) 32.2337 + 18.6101i 1.92978 + 1.11416i
\(280\) 1.62772 7.57301i 0.0972748 0.452574i
\(281\) 6.12772 + 3.53784i 0.365549 + 0.211050i 0.671512 0.740994i \(-0.265645\pi\)
−0.305963 + 0.952043i \(0.598978\pi\)
\(282\) −12.7446 −0.758928
\(283\) −1.44158 2.49689i −0.0856929 0.148424i 0.819993 0.572373i \(-0.193977\pi\)
−0.905686 + 0.423949i \(0.860644\pi\)
\(284\) −1.37228 + 2.37686i −0.0814299 + 0.141041i
\(285\) 0 0
\(286\) 0 0
\(287\) −17.2337 9.94987i −1.01727 0.587323i
\(288\) −3.37228 −0.198714
\(289\) 7.55842 + 13.0916i 0.444613 + 0.770092i
\(290\) −16.4307 + 5.29734i −0.964844 + 0.311071i
\(291\) 26.4891 15.2935i 1.55282 0.896521i
\(292\) 6.00000 3.46410i 0.351123 0.202721i
\(293\) −24.9891 + 14.4275i −1.45988 + 0.842862i −0.999005 0.0446025i \(-0.985798\pi\)
−0.460875 + 0.887465i \(0.652465\pi\)
\(294\) −10.9307 6.31084i −0.637492 0.368056i
\(295\) 25.4891 8.21782i 1.48403 0.478460i
\(296\) 0.500000 6.06218i 0.0290619 0.352357i
\(297\) 0 0
\(298\) 5.31386 9.20387i 0.307824 0.533166i
\(299\) 0.510875 + 0.884861i 0.0295446 + 0.0511728i
\(300\) 5.18614 11.5070i 0.299422 0.664357i
\(301\) 27.3505 15.7908i 1.57646 0.910169i
\(302\) 17.8614 1.02781
\(303\) −3.00000 + 1.73205i −0.172345 + 0.0995037i
\(304\) 0 0
\(305\) −1.11684 + 5.19615i −0.0639503 + 0.297531i
\(306\) 4.62772 0.264549
\(307\) 20.1398i 1.14944i 0.818350 + 0.574720i \(0.194889\pi\)
−0.818350 + 0.574720i \(0.805111\pi\)
\(308\) 0 0
\(309\) −33.8614 + 19.5499i −1.92631 + 1.11215i
\(310\) 23.4891 7.57301i 1.33409 0.430118i
\(311\) 16.4198 + 9.47999i 0.931083 + 0.537561i 0.887154 0.461474i \(-0.152679\pi\)
0.0439291 + 0.999035i \(0.486012\pi\)
\(312\) −0.813859 0.469882i −0.0460757 0.0266018i
\(313\) −14.1753 + 24.5523i −0.801233 + 1.38778i 0.117571 + 0.993064i \(0.462489\pi\)
−0.918805 + 0.394713i \(0.870844\pi\)
\(314\) −5.61684 + 3.24289i −0.316977 + 0.183007i
\(315\) −19.3723 17.5229i −1.09150 0.987303i
\(316\) 7.11684 + 4.10891i 0.400354 + 0.231144i
\(317\) −11.3614 6.55951i −0.638120 0.368419i 0.145770 0.989319i \(-0.453434\pi\)
−0.783890 + 0.620900i \(0.786767\pi\)
\(318\) 1.18614 2.05446i 0.0665155 0.115208i
\(319\) 0 0
\(320\) −1.50000 + 1.65831i −0.0838525 + 0.0927025i
\(321\) −4.81386 + 8.33785i −0.268683 + 0.465373i
\(322\) 9.50744i 0.529829i
\(323\) 0 0
\(324\) 3.87228 6.70699i 0.215127 0.372610i
\(325\) 1.51087 1.08724i 0.0838082 0.0603093i
\(326\) −8.55842 14.8236i −0.474007 0.821004i
\(327\) 6.00000 0.331801
\(328\) 2.87228 + 4.97494i 0.158595 + 0.274695i
\(329\) 8.74456 + 15.1460i 0.482103 + 0.835027i
\(330\) 0 0
\(331\) −24.0000 13.8564i −1.31916 0.761617i −0.335566 0.942017i \(-0.608928\pi\)
−0.983593 + 0.180400i \(0.942261\pi\)
\(332\) 13.5615i 0.744281i
\(333\) −16.8614 11.6819i −0.923999 0.640166i
\(334\) 5.48913 0.300352
\(335\) 3.86141 17.9653i 0.210971 0.981550i
\(336\) 4.37228 + 7.57301i 0.238528 + 0.413142i
\(337\) −0.941578 + 0.543620i −0.0512910 + 0.0296129i −0.525426 0.850839i \(-0.676094\pi\)
0.474135 + 0.880452i \(0.342761\pi\)
\(338\) 6.43070 + 11.1383i 0.349784 + 0.605844i
\(339\) 51.0767i 2.77410i
\(340\) 2.05842 2.27567i 0.111634 0.123416i
\(341\) 0 0
\(342\) 0 0
\(343\) 6.92820i 0.374088i
\(344\) −9.11684 −0.491547
\(345\) 3.25544 15.1460i 0.175267 0.815435i
\(346\) −10.5475 + 6.08963i −0.567040 + 0.327380i
\(347\) −2.74456 −0.147336 −0.0736679 0.997283i \(-0.523470\pi\)
−0.0736679 + 0.997283i \(0.523470\pi\)
\(348\) 9.74456 16.8781i 0.522363 0.904760i
\(349\) −0.313859 + 0.543620i −0.0168005 + 0.0290993i −0.874303 0.485380i \(-0.838681\pi\)
0.857503 + 0.514479i \(0.172015\pi\)
\(350\) −17.2337 + 1.73205i −0.921179 + 0.0925820i
\(351\) −0.302985 + 0.174928i −0.0161721 + 0.00933698i
\(352\) 0 0
\(353\) −12.1753 + 21.0882i −0.648024 + 1.12241i 0.335570 + 0.942015i \(0.391071\pi\)
−0.983594 + 0.180395i \(0.942262\pi\)
\(354\) −15.1168 + 26.1831i −0.803451 + 1.39162i
\(355\) 6.00000 + 1.28962i 0.318447 + 0.0684459i
\(356\) 9.60002i 0.508800i
\(357\) −6.00000 10.3923i −0.317554 0.550019i
\(358\) −17.4891 10.0974i −0.924329 0.533662i
\(359\) −10.3723 −0.547428 −0.273714 0.961811i \(-0.588252\pi\)
−0.273714 + 0.961811i \(0.588252\pi\)
\(360\) 2.31386 + 7.17687i 0.121951 + 0.378254i
\(361\) −9.50000 + 16.4545i −0.500000 + 0.866025i
\(362\) −4.86141 −0.255510
\(363\) 24.0475 13.8839i 1.26217 0.728714i
\(364\) 1.28962i 0.0675945i
\(365\) −11.4891 10.3923i −0.601368 0.543958i
\(366\) −3.00000 5.19615i −0.156813 0.271607i
\(367\) −19.1168 + 11.0371i −0.997891 + 0.576133i −0.907624 0.419785i \(-0.862106\pi\)
−0.0902675 + 0.995918i \(0.528772\pi\)
\(368\) −1.37228 + 2.37686i −0.0715351 + 0.123902i
\(369\) 19.3723 1.00848
\(370\) −13.2446 + 3.09541i −0.688552 + 0.160923i
\(371\) −3.25544 −0.169014
\(372\) −13.9307 + 24.1287i −0.722273 + 1.25101i
\(373\) −10.5000 + 6.06218i −0.543669 + 0.313888i −0.746565 0.665313i \(-0.768298\pi\)
0.202895 + 0.979200i \(0.434965\pi\)
\(374\) 0 0
\(375\) −28.0475 3.14170i −1.44837 0.162237i
\(376\) 5.04868i 0.260366i
\(377\) 2.48913 1.43710i 0.128196 0.0740143i
\(378\) 3.25544 0.167442
\(379\) −5.37228 + 9.30506i −0.275956 + 0.477969i −0.970376 0.241601i \(-0.922328\pi\)
0.694420 + 0.719570i \(0.255661\pi\)
\(380\) 0 0
\(381\) −43.7228 −2.23999
\(382\) 21.3030 + 12.2993i 1.08996 + 0.629286i
\(383\) 6.25544 + 10.8347i 0.319638 + 0.553629i 0.980412 0.196955i \(-0.0631054\pi\)
−0.660775 + 0.750584i \(0.729772\pi\)
\(384\) 2.52434i 0.128820i
\(385\) 0 0
\(386\) 3.31386 5.73977i 0.168671 0.292147i
\(387\) −15.3723 + 26.6256i −0.781417 + 1.35345i
\(388\) 6.05842 + 10.4935i 0.307570 + 0.532726i
\(389\) 7.54755 4.35758i 0.382676 0.220938i −0.296306 0.955093i \(-0.595755\pi\)
0.678982 + 0.734155i \(0.262421\pi\)
\(390\) −0.441578 + 2.05446i −0.0223602 + 0.104031i
\(391\) 1.88316 3.26172i 0.0952353 0.164952i
\(392\) 2.50000 4.33013i 0.126269 0.218704i
\(393\) −16.7446 −0.844651
\(394\) 6.12772 3.53784i 0.308710 0.178234i
\(395\) 3.86141 17.9653i 0.194288 0.903933i
\(396\) 0 0
\(397\) 16.8781i 0.847086i −0.905876 0.423543i \(-0.860786\pi\)
0.905876 0.423543i \(-0.139214\pi\)
\(398\) −7.67527 4.43132i −0.384726 0.222122i
\(399\) 0 0
\(400\) 4.55842 + 2.05446i 0.227921 + 0.102723i
\(401\) 13.2665i 0.662497i 0.943543 + 0.331249i \(0.107470\pi\)
−0.943543 + 0.331249i \(0.892530\pi\)
\(402\) 10.3723 + 17.9653i 0.517322 + 0.896029i
\(403\) −3.55842 + 2.05446i −0.177258 + 0.102340i
\(404\) −0.686141 1.18843i −0.0341368 0.0591266i
\(405\) −16.9307 3.63903i −0.841293 0.180825i
\(406\) −26.7446 −1.32731
\(407\) 0 0
\(408\) 3.46410i 0.171499i
\(409\) 25.5000 + 14.7224i 1.26089 + 0.727977i 0.973247 0.229759i \(-0.0737939\pi\)
0.287646 + 0.957737i \(0.407127\pi\)
\(410\) 8.61684 9.52628i 0.425556 0.470469i
\(411\) 3.37228 + 5.84096i 0.166342 + 0.288113i
\(412\) −7.74456 13.4140i −0.381547 0.660859i
\(413\) 41.4891 2.04155
\(414\) 4.62772 + 8.01544i 0.227440 + 0.393938i
\(415\) 28.8614 9.30506i 1.41675 0.456768i
\(416\) 0.186141 0.322405i 0.00912630 0.0158072i
\(417\) 47.3176i 2.31715i
\(418\) 0 0
\(419\) 8.48913 14.7036i 0.414721 0.718318i −0.580678 0.814133i \(-0.697213\pi\)
0.995399 + 0.0958155i \(0.0305459\pi\)
\(420\) 13.1168 14.5012i 0.640036 0.707587i
\(421\) 10.5947i 0.516353i 0.966098 + 0.258177i \(0.0831217\pi\)
−0.966098 + 0.258177i \(0.916878\pi\)
\(422\) 7.74456 13.4140i 0.376999 0.652982i
\(423\) −14.7446 8.51278i −0.716905 0.413905i
\(424\) 0.813859 + 0.469882i 0.0395245 + 0.0228195i
\(425\) −6.25544 2.81929i −0.303433 0.136756i
\(426\) −6.00000 + 3.46410i −0.290701 + 0.167836i
\(427\) −4.11684 + 7.13058i −0.199228 + 0.345073i
\(428\) −3.30298 1.90698i −0.159656 0.0921773i
\(429\) 0 0
\(430\) 6.25544 + 19.4024i 0.301664 + 0.935668i
\(431\) 27.0475 15.6159i 1.30283 0.752192i 0.321945 0.946758i \(-0.395663\pi\)
0.980889 + 0.194566i \(0.0623300\pi\)
\(432\) −0.813859 0.469882i −0.0391568 0.0226072i
\(433\) 20.9870i 1.00857i −0.863537 0.504285i \(-0.831756\pi\)
0.863537 0.504285i \(-0.168244\pi\)
\(434\) 38.2337 1.83528
\(435\) −42.6060 9.15759i −2.04280 0.439073i
\(436\) 2.37686i 0.113831i
\(437\) 0 0
\(438\) 17.4891 0.835663
\(439\) −14.4416 + 8.33785i −0.689259 + 0.397944i −0.803334 0.595528i \(-0.796943\pi\)
0.114075 + 0.993472i \(0.463609\pi\)
\(440\) 0 0
\(441\) −8.43070 14.6024i −0.401462 0.695353i
\(442\) −0.255437 + 0.442430i −0.0121499 + 0.0210443i
\(443\) 28.6526i 1.36133i −0.732597 0.680663i \(-0.761692\pi\)
0.732597 0.680663i \(-0.238308\pi\)
\(444\) 8.74456 12.6217i 0.414999 0.598999i
\(445\) 20.4307 6.58696i 0.968508 0.312252i
\(446\) 16.1168 + 9.30506i 0.763155 + 0.440608i
\(447\) 23.2337 13.4140i 1.09892 0.634459i
\(448\) −3.00000 + 1.73205i −0.141737 + 0.0818317i
\(449\) 5.69702 3.28917i 0.268859 0.155226i −0.359510 0.933141i \(-0.617056\pi\)
0.628369 + 0.777915i \(0.283723\pi\)
\(450\) 13.6861 9.84868i 0.645171 0.464271i
\(451\) 0 0
\(452\) −20.2337 −0.951713
\(453\) 39.0475 + 22.5441i 1.83461 + 1.05921i
\(454\) −10.3723 −0.486795
\(455\) 2.74456 0.884861i 0.128667 0.0414829i
\(456\) 0 0
\(457\) −9.80298 16.9793i −0.458564 0.794257i 0.540321 0.841459i \(-0.318303\pi\)
−0.998885 + 0.0472023i \(0.984969\pi\)
\(458\) 8.86141 0.414066
\(459\) 1.11684 + 0.644810i 0.0521298 + 0.0300972i
\(460\) 6.00000 + 1.28962i 0.279751 + 0.0601289i
\(461\) 27.8614 + 16.0858i 1.29764 + 0.749190i 0.979995 0.199021i \(-0.0637763\pi\)
0.317640 + 0.948211i \(0.397110\pi\)
\(462\) 0 0
\(463\) −2.25544 3.90653i −0.104819 0.181552i 0.808845 0.588022i \(-0.200093\pi\)
−0.913664 + 0.406470i \(0.866760\pi\)
\(464\) 6.68614 + 3.86025i 0.310396 + 0.179207i
\(465\) 60.9090 + 13.0916i 2.82459 + 0.607107i
\(466\) −12.6861 7.32435i −0.587674 0.339294i
\(467\) −22.3723 −1.03527 −0.517633 0.855603i \(-0.673187\pi\)
−0.517633 + 0.855603i \(0.673187\pi\)
\(468\) −0.627719 1.08724i −0.0290163 0.0502577i
\(469\) 14.2337 24.6535i 0.657251 1.13839i
\(470\) −10.7446 + 3.46410i −0.495610 + 0.159787i
\(471\) −16.3723 −0.754395
\(472\) −10.3723 5.98844i −0.477423 0.275640i
\(473\) 0 0
\(474\) 10.3723 + 17.9653i 0.476415 + 0.825174i
\(475\) 0 0
\(476\) 4.11684 2.37686i 0.188695 0.108943i
\(477\) 2.74456 1.58457i 0.125665 0.0725527i
\(478\) 8.48913 4.90120i 0.388284 0.224176i
\(479\) 31.4198 + 18.1402i 1.43561 + 0.828849i 0.997540 0.0700928i \(-0.0223295\pi\)
0.438068 + 0.898942i \(0.355663\pi\)
\(480\) −5.37228 + 1.73205i −0.245210 + 0.0790569i
\(481\) 2.04755 0.967215i 0.0933601 0.0441012i
\(482\) 20.7846i 0.946713i
\(483\) 12.0000 20.7846i 0.546019 0.945732i
\(484\) 5.50000 + 9.52628i 0.250000 + 0.433013i
\(485\) 18.1753 20.0935i 0.825296 0.912399i
\(486\) 19.3723 11.1846i 0.878745 0.507343i
\(487\) −2.00000 −0.0906287 −0.0453143 0.998973i \(-0.514429\pi\)
−0.0453143 + 0.998973i \(0.514429\pi\)
\(488\) 2.05842 1.18843i 0.0931804 0.0537977i
\(489\) 43.2087i 1.95396i
\(490\) −10.9307 2.34941i −0.493799 0.106136i
\(491\) −19.7228 −0.890078 −0.445039 0.895511i \(-0.646810\pi\)
−0.445039 + 0.895511i \(0.646810\pi\)
\(492\) 14.5012i 0.653765i
\(493\) −9.17527 5.29734i −0.413233 0.238580i
\(494\) 0 0
\(495\) 0 0
\(496\) −9.55842 5.51856i −0.429186 0.247791i
\(497\) 8.23369 + 4.75372i 0.369331 + 0.213234i
\(498\) −17.1168 + 29.6472i −0.767024 + 1.32852i
\(499\) 12.0000 6.92820i 0.537194 0.310149i −0.206747 0.978394i \(-0.566288\pi\)
0.743941 + 0.668245i \(0.232954\pi\)
\(500\) 1.24456 11.1109i 0.0556585 0.496892i
\(501\) 12.0000 + 6.92820i 0.536120 + 0.309529i
\(502\) 18.8614 + 10.8896i 0.841826 + 0.486028i
\(503\) 11.4891 19.8997i 0.512275 0.887286i −0.487624 0.873054i \(-0.662136\pi\)
0.999899 0.0142322i \(-0.00453039\pi\)
\(504\) 11.6819i 0.520354i
\(505\) −2.05842 + 2.27567i −0.0915986 + 0.101266i
\(506\) 0 0
\(507\) 32.4665i 1.44189i
\(508\) 17.3205i 0.768473i
\(509\) −10.8030 + 18.7113i −0.478834 + 0.829365i −0.999705 0.0242705i \(-0.992274\pi\)
0.520872 + 0.853635i \(0.325607\pi\)
\(510\) 7.37228 2.37686i 0.326450 0.105249i
\(511\) −12.0000 20.7846i −0.530849 0.919457i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) −0.430703 0.746000i −0.0189975 0.0329046i
\(515\) −23.2337 + 25.6858i −1.02380 + 1.13185i
\(516\) −19.9307 11.5070i −0.877400 0.506567i
\(517\) 0 0
\(518\) −21.0000 1.73205i −0.922687 0.0761019i
\(519\) −30.7446 −1.34954
\(520\) −0.813859 0.174928i −0.0356901 0.00767111i
\(521\) −2.18614 3.78651i −0.0957766 0.165890i 0.814156 0.580646i \(-0.197200\pi\)
−0.909932 + 0.414756i \(0.863867\pi\)
\(522\) 22.5475 13.0178i 0.986879 0.569775i
\(523\) −8.55842 14.8236i −0.374234 0.648192i 0.615978 0.787763i \(-0.288761\pi\)
−0.990212 + 0.139571i \(0.955428\pi\)
\(524\) 6.63325i 0.289775i
\(525\) −39.8614 17.9653i −1.73969 0.784071i
\(526\) 3.16915i 0.138181i
\(527\) 13.1168 + 7.57301i 0.571379 + 0.329886i
\(528\) 0 0
\(529\) −15.4674 −0.672495
\(530\) 0.441578 2.05446i 0.0191809 0.0892399i
\(531\) −34.9783 + 20.1947i −1.51793 + 0.876375i
\(532\) 0 0
\(533\) −1.06930 + 1.85208i −0.0463164 + 0.0802223i
\(534\) −12.1168 + 20.9870i −0.524347 + 0.908196i
\(535\) −1.79211 + 8.33785i −0.0774797 + 0.360477i
\(536\) −7.11684 + 4.10891i −0.307401 + 0.177478i
\(537\) −25.4891 44.1485i −1.09994 1.90515i
\(538\) 11.7446 20.3422i 0.506344 0.877014i
\(539\) 0 0
\(540\) −0.441578 + 2.05446i −0.0190025 + 0.0884097i
\(541\) 44.3508i 1.90679i −0.301723 0.953396i \(-0.597562\pi\)
0.301723 0.953396i \(-0.402438\pi\)
\(542\) −9.18614 15.9109i −0.394579 0.683430i
\(543\) −10.6277 6.13592i −0.456079 0.263317i
\(544\) −1.37228 −0.0588361
\(545\) 5.05842 1.63086i 0.216679 0.0698584i
\(546\) −1.62772 + 2.81929i −0.0696599 + 0.120655i
\(547\) 46.0951 1.97088 0.985442 0.170012i \(-0.0543807\pi\)
0.985442 + 0.170012i \(0.0543807\pi\)
\(548\) −2.31386 + 1.33591i −0.0988432 + 0.0570671i
\(549\) 8.01544i 0.342091i
\(550\) 0 0
\(551\) 0 0
\(552\) −6.00000 + 3.46410i −0.255377 + 0.147442i
\(553\) 14.2337 24.6535i 0.605278 1.04837i
\(554\) 7.00000 0.297402
\(555\) −32.8614 9.94987i −1.39489 0.422349i
\(556\) −18.7446 −0.794947
\(557\) −22.2446 + 38.5287i −0.942532 + 1.63251i −0.181914 + 0.983314i \(0.558229\pi\)
−0.760618 + 0.649200i \(0.775104\pi\)
\(558\) −32.2337 + 18.6101i −1.36456 + 0.787830i
\(559\) −1.69702 2.93932i −0.0717761 0.124320i
\(560\) 5.74456 + 5.19615i 0.242752 + 0.219578i
\(561\) 0 0
\(562\) −6.12772 + 3.53784i −0.258482 + 0.149235i
\(563\) −8.23369 −0.347009 −0.173504 0.984833i \(-0.555509\pi\)
−0.173504 + 0.984833i \(0.555509\pi\)
\(564\) 6.37228 11.0371i 0.268321 0.464746i
\(565\) 13.8832 + 43.0612i 0.584069 + 1.81160i
\(566\) 2.88316 0.121188
\(567\) −23.2337 13.4140i −0.975723 0.563334i
\(568\) −1.37228 2.37686i −0.0575796 0.0997309i
\(569\) 6.19082i 0.259533i −0.991545 0.129766i \(-0.958577\pi\)
0.991545 0.129766i \(-0.0414227\pi\)
\(570\) 0 0
\(571\) 19.2337 33.3137i 0.804905 1.39414i −0.111451 0.993770i \(-0.535550\pi\)
0.916355 0.400366i \(-0.131117\pi\)
\(572\) 0 0
\(573\) 31.0475 + 53.7759i 1.29703 + 2.24652i
\(574\) 17.2337 9.94987i 0.719320 0.415300i
\(575\) −1.37228 13.6540i −0.0572281 0.569412i
\(576\) 1.68614 2.92048i 0.0702559 0.121687i
\(577\) −13.2337 + 22.9214i −0.550926 + 0.954231i 0.447282 + 0.894393i \(0.352392\pi\)
−0.998208 + 0.0598384i \(0.980941\pi\)
\(578\) −15.1168 −0.628778
\(579\) 14.4891 8.36530i 0.602147 0.347650i
\(580\) 3.62772 16.8781i 0.150633 0.700824i
\(581\) 46.9783 1.94899
\(582\) 30.5870i 1.26787i
\(583\) 0 0
\(584\) 6.92820i 0.286691i
\(585\) −1.88316 + 2.08191i −0.0778589 + 0.0860763i
\(586\) 28.8550i 1.19199i
\(587\) −15.3030 26.5055i −0.631622 1.09400i −0.987220 0.159362i \(-0.949056\pi\)
0.355598 0.934639i \(-0.384277\pi\)
\(588\) 10.9307 6.31084i 0.450775 0.260255i
\(589\) 0 0
\(590\) −5.62772 + 26.1831i −0.231690 + 1.07794i
\(591\) 17.8614 0.734720
\(592\) 5.00000 + 3.46410i 0.205499 + 0.142374i
\(593\) 10.8896i 0.447184i −0.974683 0.223592i \(-0.928222\pi\)
0.974683 0.223592i \(-0.0717783\pi\)
\(594\) 0 0
\(595\) −7.88316 7.13058i −0.323178 0.292325i
\(596\) 5.31386 + 9.20387i 0.217664 + 0.377005i
\(597\) −11.1861 19.3750i −0.457818 0.792964i
\(598\) −1.02175 −0.0417824
\(599\) 6.81386 + 11.8020i 0.278407 + 0.482215i 0.970989 0.239124i \(-0.0768603\pi\)
−0.692582 + 0.721339i \(0.743527\pi\)
\(600\) 7.37228 + 10.2448i 0.300972 + 0.418243i
\(601\) −12.8723 + 22.2954i −0.525071 + 0.909450i 0.474502 + 0.880254i \(0.342628\pi\)
−0.999574 + 0.0291960i \(0.990705\pi\)
\(602\) 31.5817i 1.28717i
\(603\) 27.7128i 1.12855i
\(604\) −8.93070 + 15.4684i −0.363385 + 0.629402i
\(605\) 16.5000 18.2414i 0.670820 0.741620i
\(606\) 3.46410i 0.140720i
\(607\) 4.00000 6.92820i 0.162355 0.281207i −0.773358 0.633970i \(-0.781424\pi\)
0.935713 + 0.352763i \(0.114758\pi\)
\(608\) 0 0
\(609\) −58.4674 33.7562i −2.36922 1.36787i
\(610\) −3.94158 3.56529i −0.159590 0.144354i
\(611\) 1.62772 0.939764i 0.0658504 0.0380188i
\(612\) −2.31386 + 4.00772i −0.0935322 + 0.162003i
\(613\) −30.9416 17.8641i −1.24972 0.721525i −0.278665 0.960388i \(-0.589892\pi\)
−0.971053 + 0.238863i \(0.923225\pi\)
\(614\) −17.4416 10.0699i −0.703885 0.406388i
\(615\) 30.8614 9.94987i 1.24445 0.401218i
\(616\) 0 0
\(617\) 11.4891 + 6.63325i 0.462535 + 0.267045i 0.713109 0.701053i \(-0.247286\pi\)
−0.250575 + 0.968097i \(0.580620\pi\)
\(618\) 39.0998i 1.57282i
\(619\) −38.4674 −1.54613 −0.773067 0.634324i \(-0.781278\pi\)
−0.773067 + 0.634324i \(0.781278\pi\)
\(620\) −5.18614 + 24.1287i −0.208280 + 0.969031i
\(621\) 2.57924i 0.103501i
\(622\) −16.4198 + 9.47999i −0.658375 + 0.380113i
\(623\) 33.2554 1.33235
\(624\) 0.813859 0.469882i 0.0325804 0.0188103i
\(625\) −24.5000 + 4.97494i −0.980000 + 0.198997i
\(626\) −14.1753 24.5523i −0.566558 0.981307i
\(627\) 0 0
\(628\) 6.48577i 0.258811i
\(629\) −6.86141 4.75372i −0.273582 0.189543i
\(630\) 24.8614 8.01544i 0.990502 0.319343i
\(631\) −10.3247 5.96099i −0.411021 0.237303i 0.280207 0.959940i \(-0.409597\pi\)
−0.691228 + 0.722636i \(0.742930\pi\)
\(632\) −7.11684 + 4.10891i −0.283093 + 0.163444i
\(633\) 33.8614 19.5499i 1.34587 0.777038i
\(634\) 11.3614 6.55951i 0.451219 0.260511i
\(635\) −36.8614 + 11.8843i −1.46280 + 0.471614i
\(636\) 1.18614 + 2.05446i 0.0470335 + 0.0814645i
\(637\) 1.86141 0.0737516
\(638\) 0 0
\(639\) −9.25544 −0.366139
\(640\) −0.686141 2.12819i −0.0271221 0.0841243i
\(641\) 13.5000 23.3827i 0.533218 0.923561i −0.466029 0.884769i \(-0.654316\pi\)
0.999247 0.0387913i \(-0.0123508\pi\)
\(642\) −4.81386 8.33785i −0.189988 0.329069i
\(643\) 7.86141 0.310024 0.155012 0.987913i \(-0.450458\pi\)
0.155012 + 0.987913i \(0.450458\pi\)
\(644\) 8.23369 + 4.75372i 0.324453 + 0.187323i
\(645\) −10.8139 + 50.3118i −0.425795 + 1.98103i
\(646\) 0 0
\(647\) 11.7446 + 20.3422i 0.461726 + 0.799734i 0.999047 0.0436444i \(-0.0138969\pi\)
−0.537321 + 0.843378i \(0.680564\pi\)
\(648\) 3.87228 + 6.70699i 0.152118 + 0.263475i
\(649\) 0 0
\(650\) 0.186141 + 1.85208i 0.00730104 + 0.0726444i
\(651\) 83.5842 + 48.2574i 3.27592 + 1.89136i
\(652\) 17.1168 0.670347
\(653\) 13.5000 + 23.3827i 0.528296 + 0.915035i 0.999456 + 0.0329874i \(0.0105021\pi\)
−0.471160 + 0.882048i \(0.656165\pi\)
\(654\) −3.00000 + 5.19615i −0.117309 + 0.203186i
\(655\) −14.1168 + 4.55134i −0.551591 + 0.177836i
\(656\) −5.74456 −0.224287
\(657\) 20.2337 + 11.6819i 0.789391 + 0.455755i
\(658\) −17.4891 −0.681797
\(659\) −0.510875 0.884861i −0.0199009 0.0344693i 0.855903 0.517136i \(-0.173002\pi\)
−0.875804 + 0.482666i \(0.839668\pi\)
\(660\) 0 0
\(661\) 43.2921 24.9947i 1.68387 0.972182i 0.724820 0.688939i \(-0.241923\pi\)
0.959048 0.283243i \(-0.0914103\pi\)
\(662\) 24.0000 13.8564i 0.932786 0.538545i
\(663\) −1.11684 + 0.644810i −0.0433746 + 0.0250424i
\(664\) −11.7446 6.78073i −0.455777 0.263143i
\(665\) 0 0
\(666\) 18.5475 8.76144i 0.718703 0.339499i
\(667\) 21.1894i 0.820456i
\(668\) −2.74456 + 4.75372i −0.106190 + 0.183927i
\(669\) 23.4891 + 40.6844i 0.908142 + 1.57295i
\(670\) 13.6277 + 12.3267i 0.526485 + 0.476223i
\(671\) 0 0
\(672\) −8.74456 −0.337329
\(673\) 6.00000 3.46410i 0.231283 0.133531i −0.379881 0.925035i \(-0.624035\pi\)
0.611164 + 0.791504i \(0.290702\pi\)
\(674\) 1.08724i 0.0418789i
\(675\) 4.67527 0.469882i 0.179951 0.0180858i
\(676\) −12.8614 −0.494669
\(677\) 4.84630i 0.186258i −0.995654 0.0931291i \(-0.970313\pi\)
0.995654 0.0931291i \(-0.0296869\pi\)
\(678\) −44.2337 25.5383i −1.69878 0.980794i
\(679\) 36.3505 20.9870i 1.39501 0.805407i
\(680\) 0.941578 + 2.92048i 0.0361079 + 0.111995i
\(681\) −22.6753 13.0916i −0.868918 0.501670i
\(682\) 0 0
\(683\) 5.44158 9.42509i 0.208216 0.360641i −0.742936 0.669362i \(-0.766568\pi\)
0.951153 + 0.308721i \(0.0999009\pi\)
\(684\) 0 0
\(685\) 4.43070 + 4.00772i 0.169288 + 0.153127i
\(686\) 6.00000 + 3.46410i 0.229081 + 0.132260i
\(687\) 19.3723 + 11.1846i 0.739099 + 0.426719i
\(688\) 4.55842 7.89542i 0.173788 0.301010i
\(689\) 0.349857i 0.0133285i
\(690\) 11.4891 + 10.3923i 0.437384 + 0.395628i
\(691\) −6.74456 + 11.6819i −0.256575 + 0.444401i −0.965322 0.261061i \(-0.915927\pi\)
0.708747 + 0.705463i \(0.249261\pi\)
\(692\) 12.1793i 0.462986i
\(693\) 0 0
\(694\) 1.37228 2.37686i 0.0520911 0.0902244i
\(695\) 12.8614 + 39.8921i 0.487861 + 1.51319i
\(696\) 9.74456 + 16.8781i 0.369367 + 0.639762i
\(697\) 7.88316 0.298596
\(698\) −0.313859 0.543620i −0.0118798 0.0205763i
\(699\) −18.4891 32.0241i −0.699323 1.21126i
\(700\) 7.11684 15.7908i 0.268991 0.596838i
\(701\) 32.7446 + 18.9051i 1.23675 + 0.714035i 0.968427 0.249295i \(-0.0801990\pi\)
0.268318 + 0.963331i \(0.413532\pi\)
\(702\) 0.349857i 0.0132045i
\(703\) 0 0
\(704\) 0 0
\(705\) −27.8614 5.98844i −1.04932 0.225538i
\(706\) −12.1753 21.0882i −0.458222 0.793664i
\(707\) −4.11684 + 2.37686i −0.154830 + 0.0893911i
\(708\) −15.1168 26.1831i −0.568126 0.984023i
\(709\) 22.0742i 0.829015i 0.910046 + 0.414508i \(0.136046\pi\)
−0.910046 + 0.414508i \(0.863954\pi\)
\(710\) −4.11684 + 4.55134i −0.154502 + 0.170809i
\(711\) 27.7128i 1.03931i
\(712\) −8.31386 4.80001i −0.311575 0.179888i
\(713\) 30.2921i 1.13445i
\(714\) 12.0000 0.449089
\(715\) 0 0
\(716\) 17.4891 10.0974i 0.653599 0.377356i
\(717\) 24.7446 0.924103
\(718\) 5.18614 8.98266i 0.193545 0.335230i
\(719\) −19.6753 + 34.0786i −0.733764 + 1.27092i 0.221500 + 0.975160i \(0.428905\pi\)
−0.955264 + 0.295755i \(0.904429\pi\)
\(720\) −7.37228 1.58457i −0.274749 0.0590536i
\(721\) −46.4674 + 26.8280i −1.73054 + 0.999125i
\(722\) −9.50000 16.4545i −0.353553 0.612372i
\(723\) 26.2337 45.4381i 0.975641 1.68986i
\(724\) 2.43070 4.21010i 0.0903364 0.156467i
\(725\) −38.4090 + 3.86025i −1.42647 + 0.143366i
\(726\) 27.7677i 1.03056i
\(727\) 4.00000 + 6.92820i 0.148352 + 0.256953i 0.930618 0.365991i \(-0.119270\pi\)
−0.782267 + 0.622944i \(0.785937\pi\)
\(728\) −1.11684 0.644810i −0.0413930 0.0238983i
\(729\) 33.2337 1.23088
\(730\) 14.7446 4.75372i 0.545721 0.175943i
\(731\) −6.25544 + 10.8347i −0.231366 + 0.400737i
\(732\) 6.00000 0.221766
\(733\) −2.23369 + 1.28962i −0.0825031 + 0.0476332i −0.540684 0.841226i \(-0.681835\pi\)
0.458181 + 0.888859i \(0.348501\pi\)
\(734\) 22.0742i 0.814775i
\(735\) −20.9307 18.9325i −0.772041 0.698337i
\(736\) −1.37228 2.37686i −0.0505830 0.0876123i
\(737\) 0 0
\(738\) −9.68614 + 16.7769i −0.356552 + 0.617566i
\(739\) −20.9783 −0.771697 −0.385849 0.922562i \(-0.626091\pi\)
−0.385849 + 0.922562i \(0.626091\pi\)
\(740\) 3.94158 13.0178i 0.144895 0.478545i
\(741\) 0 0
\(742\) 1.62772 2.81929i 0.0597554 0.103499i
\(743\) −24.6060 + 14.2063i −0.902705 + 0.521177i −0.878077 0.478519i \(-0.841174\pi\)
−0.0246285 + 0.999697i \(0.507840\pi\)
\(744\) −13.9307 24.1287i −0.510724 0.884601i
\(745\) 15.9416 17.6241i 0.584054 0.645696i
\(746\) 12.1244i 0.443904i
\(747\) −39.6060 + 22.8665i −1.44911 + 0.836642i
\(748\) 0 0
\(749\) −6.60597 + 11.4419i −0.241377 + 0.418077i
\(750\) 16.7446 22.7190i 0.611425 0.829582i
\(751\) −19.3505 −0.706111 −0.353055 0.935602i \(-0.614857\pi\)
−0.353055 + 0.935602i \(0.614857\pi\)
\(752\) 4.37228 + 2.52434i 0.159441 + 0.0920531i
\(753\) 27.4891 + 47.6126i 1.00176 + 1.73510i
\(754\) 2.87419i 0.104672i
\(755\) 39.0475 + 8.39275i 1.42109 + 0.305444i
\(756\) −1.62772 + 2.81929i −0.0591996 + 0.102537i
\(757\) −13.6168 + 23.5851i −0.494913 + 0.857214i −0.999983 0.00586448i \(-0.998133\pi\)
0.505070 + 0.863078i \(0.331467\pi\)
\(758\) −5.37228 9.30506i −0.195130 0.337975i
\(759\) 0 0
\(760\) 0 0
\(761\) −24.1753 + 41.8728i −0.876353 + 1.51789i −0.0210379 + 0.999779i \(0.506697\pi\)
−0.855315 + 0.518109i \(0.826636\pi\)
\(762\) 21.8614 37.8651i 0.791955 1.37171i
\(763\) 8.23369 0.298080
\(764\) −21.3030 + 12.2993i −0.770715 + 0.444972i
\(765\) 10.1168 + 2.17448i 0.365775 + 0.0786185i
\(766\) −12.5109 −0.452036
\(767\) 4.45877i 0.160997i
\(768\) 2.18614 + 1.26217i 0.0788856 + 0.0455446i
\(769\) 39.7995i 1.43521i 0.696452 + 0.717603i \(0.254761\pi\)
−0.696452 + 0.717603i \(0.745239\pi\)
\(770\) 0 0
\(771\) 2.17448i 0.0783120i
\(772\) 3.31386 + 5.73977i 0.119268 + 0.206579i
\(773\) 6.89403 3.98027i 0.247961 0.143160i −0.370869 0.928685i \(-0.620940\pi\)
0.618830 + 0.785525i \(0.287607\pi\)
\(774\) −15.3723 26.6256i −0.552545 0.957036i
\(775\) 54.9090 5.51856i 1.97239 0.198232i
\(776\) −12.1168 −0.434969
\(777\) −43.7228 30.2921i −1.56855 1.08672i
\(778\) 8.71516i 0.312454i
\(779\) 0 0
\(780\) −1.55842 1.40965i −0.0558005 0.0504734i
\(781\) 0 0
\(782\) 1.88316 + 3.26172i 0.0673415 + 0.116639i
\(783\) 7.25544 0.259288
\(784\) 2.50000 + 4.33013i 0.0892857 + 0.154647i
\(785\) −13.8030 + 4.45015i −0.492650 + 0.158833i
\(786\) 8.37228 14.5012i 0.298629 0.517241i
\(787\) 20.5446i 0.732334i −0.930549 0.366167i \(-0.880670\pi\)
0.930549 0.366167i \(-0.119330\pi\)
\(788\) 7.07568i 0.252061i
\(789\) −4.00000 + 6.92820i −0.142404 + 0.246651i
\(790\) 13.6277 + 12.3267i 0.484852 + 0.438566i
\(791\) 70.0916i 2.49217i
\(792\) 0 0
\(793\) 0.766312 + 0.442430i 0.0272125 + 0.0157112i
\(794\) 14.6168 + 8.43904i 0.518732 + 0.299490i
\(795\) 3.55842 3.93398i 0.126204 0.139524i
\(796\) 7.67527 4.43132i 0.272043 0.157064i
\(797\) −3.81386 + 6.60580i −0.135094 + 0.233989i −0.925633 0.378422i \(-0.876467\pi\)
0.790539 + 0.612411i \(0.209800\pi\)
\(798\) 0 0
\(799\) −6.00000 3.46410i −0.212265 0.122551i
\(800\) −4.05842 + 2.92048i −0.143487 + 0.103255i
\(801\) −28.0367 + 16.1870i −0.990627 + 0.571939i
\(802\) −11.4891 6.63325i −0.405695 0.234228i
\(803\) 0 0
\(804\) −20.7446 −0.731604
\(805\) 4.46738 20.7846i 0.157454 0.732561i
\(806\) 4.10891i 0.144730i
\(807\) 51.3505 29.6472i 1.80762 1.04363i
\(808\) 1.37228 0.0482767
\(809\) −16.0693 + 9.27761i −0.564966 + 0.326183i −0.755136 0.655568i \(-0.772429\pi\)
0.190170 + 0.981751i \(0.439096\pi\)
\(810\) 11.6168 12.8429i 0.408174 0.451254i
\(811\) −5.11684 8.86263i −0.179677 0.311209i 0.762093 0.647467i \(-0.224172\pi\)
−0.941770 + 0.336258i \(0.890838\pi\)
\(812\) 13.3723 23.1615i 0.469275 0.812808i
\(813\) 46.3778i 1.62654i
\(814\) 0 0
\(815\) −11.7446 36.4280i −0.411394 1.27602i
\(816\) −3.00000 1.73205i −0.105021 0.0606339i
\(817\) 0 0
\(818\) −25.5000 + 14.7224i −0.891587 + 0.514758i
\(819\) −3.76631 + 2.17448i −0.131606 + 0.0759825i
\(820\) 3.94158 + 12.2255i 0.137646 + 0.426935i
\(821\) 16.1168 + 27.9152i 0.562482 + 0.974247i 0.997279 + 0.0737186i \(0.0234867\pi\)
−0.434797 + 0.900528i \(0.643180\pi\)
\(822\) −6.74456 −0.235244
\(823\) −4.11684 2.37686i −0.143504 0.0828522i 0.426529 0.904474i \(-0.359736\pi\)
−0.570033 + 0.821622i \(0.693070\pi\)
\(824\) 15.4891 0.539589
\(825\) 0 0
\(826\) −20.7446 + 35.9306i −0.721796 + 1.25019i
\(827\) 14.2337 + 24.6535i 0.494954 + 0.857285i 0.999983 0.00581705i \(-0.00185164\pi\)
−0.505029 + 0.863102i \(0.668518\pi\)
\(828\) −9.25544 −0.321649
\(829\) −2.23369 1.28962i −0.0775792 0.0447904i 0.460709 0.887551i \(-0.347595\pi\)
−0.538288 + 0.842761i \(0.680929\pi\)
\(830\) −6.37228 + 29.6472i −0.221185 + 1.02907i
\(831\) 15.3030 + 8.83518i 0.530855 + 0.306489i
\(832\) 0.186141 + 0.322405i 0.00645327 + 0.0111774i
\(833\) −3.43070 5.94215i −0.118867 0.205883i
\(834\) −40.9783 23.6588i −1.41896 0.819237i
\(835\) 12.0000 + 2.57924i 0.415277 + 0.0892583i
\(836\) 0 0
\(837\) −10.3723 −0.358518
\(838\) 8.48913 + 14.7036i 0.293252 + 0.507927i
\(839\) 27.3030 47.2902i 0.942604 1.63264i 0.182124 0.983276i \(-0.441703\pi\)
0.760479 0.649362i \(-0.224964\pi\)
\(840\) 6.00000 + 18.6101i 0.207020 + 0.642110i
\(841\) −30.6060 −1.05538
\(842\) −9.17527 5.29734i −0.316201 0.182558i
\(843\) −17.8614 −0.615180
\(844\) 7.74456 + 13.4140i 0.266579 + 0.461728i
\(845\) 8.82473 + 27.3716i 0.303580 + 0.941611i
\(846\) 14.7446 8.51278i 0.506929 0.292675i
\(847\) 33.0000 19.0526i 1.13389 0.654654i
\(848\) −0.813859 + 0.469882i −0.0279480 + 0.0161358i
\(849\) 6.30298 + 3.63903i 0.216318 + 0.124891i
\(850\) 5.56930 4.00772i 0.191025 0.137464i
\(851\) 1.37228 16.6380i 0.0470412 0.570344i
\(852\) 6.92820i 0.237356i
\(853\) 0.616844 1.06841i 0.0211203 0.0365815i −0.855272 0.518179i \(-0.826610\pi\)
0.876392 + 0.481598i \(0.159943\pi\)
\(854\) −4.11684 7.13058i −0.140876 0.244004i
\(855\) 0 0
\(856\) 3.30298 1.90698i 0.112894 0.0651792i
\(857\) 18.8614 0.644293 0.322147 0.946690i \(-0.395596\pi\)
0.322147 + 0.946690i \(0.395596\pi\)
\(858\) 0 0
\(859\) 3.46410i 0.118194i −0.998252 0.0590968i \(-0.981178\pi\)
0.998252 0.0590968i \(-0.0188221\pi\)
\(860\) −19.9307 4.28384i −0.679631 0.146078i
\(861\) 50.2337 1.71196
\(862\) 31.2318i 1.06376i
\(863\) 6.60597 + 3.81396i 0.224870 + 0.129829i 0.608203 0.793781i \(-0.291891\pi\)
−0.383333 + 0.923610i \(0.625224\pi\)
\(864\) 0.813859 0.469882i 0.0276881 0.0159857i
\(865\) −25.9198 + 8.35668i −0.881301 + 0.284136i
\(866\) 18.1753 + 10.4935i 0.617621 + 0.356583i
\(867\) −33.0475 19.0800i −1.12235 0.647991i
\(868\) −19.1168 + 33.1113i −0.648868 + 1.12387i
\(869\) 0 0
\(870\) 29.2337 32.3191i 0.991115 1.09572i
\(871\) −2.64947 1.52967i −0.0897738 0.0518309i
\(872\) −2.05842 1.18843i −0.0697070 0.0402453i
\(873\) −20.4307 + 35.3870i −0.691475 + 1.19767i
\(874\) 0 0
\(875\) −38.4891 4.31129i −1.30117 0.145748i
\(876\) −8.74456 + 15.1460i −0.295451 + 0.511737i
\(877\) 15.9932i 0.540053i 0.962853 + 0.270026i \(0.0870324\pi\)
−0.962853 + 0.270026i \(0.912968\pi\)
\(878\) 16.6757i 0.562778i
\(879\) 36.4198 63.0810i 1.22841 2.12767i
\(880\) 0 0
\(881\) −8.05842 13.9576i −0.271495 0.470243i 0.697750 0.716342i \(-0.254185\pi\)
−0.969245 + 0.246098i \(0.920851\pi\)
\(882\) 16.8614 0.567753
\(883\) 29.6753 + 51.3991i 0.998652 + 1.72972i 0.544274 + 0.838907i \(0.316805\pi\)
0.454378 + 0.890809i \(0.349862\pi\)
\(884\) −0.255437 0.442430i −0.00859129 0.0148805i
\(885\) −45.3505 + 50.1369i −1.52444 + 1.68533i
\(886\) 24.8139 + 14.3263i 0.833638 + 0.481301i
\(887\) 21.7793i 0.731277i 0.930757 + 0.365638i \(0.119149\pi\)
−0.930757 + 0.365638i \(0.880851\pi\)
\(888\) 6.55842 + 13.8839i 0.220086 + 0.465912i
\(889\) −60.0000 −2.01234
\(890\) −4.51087 + 20.9870i −0.151205 + 0.703485i
\(891\) 0 0
\(892\) −16.1168 + 9.30506i −0.539632 + 0.311557i
\(893\) 0 0
\(894\) 26.8280i 0.897261i
\(895\) −33.4891 30.2921i −1.11942 1.01255i
\(896\) 3.46410i 0.115728i
\(897\) −2.23369 1.28962i −0.0745807 0.0430592i
\(898\) 6.57835i 0.219522i
\(899\) 85.2119 2.84198
\(900\) 1.68614 + 16.7769i 0.0562047 + 0.559230i
\(901\) 1.11684 0.644810i 0.0372075 0.0214817i
\(902\) 0 0
\(903\) −39.8614 + 69.0420i −1.32650 + 2.29757i
\(904\) 10.1168 17.5229i 0.336481 0.582803i
\(905\) −10.6277 2.28429i −0.353277 0.0759323i
\(906\) −39.0475 + 22.5441i −1.29727 + 0.748978i
\(907\) 13.2554 + 22.9591i 0.440140 + 0.762344i 0.997699 0.0677926i \(-0.0215956\pi\)
−0.557560 + 0.830137i \(0.688262\pi\)
\(908\) 5.18614 8.98266i 0.172108 0.298100i
\(909\) 2.31386 4.00772i 0.0767459 0.132928i
\(910\) −0.605969 + 2.81929i −0.0200877 + 0.0934586i
\(911\) 49.2520i 1.63179i −0.578198 0.815896i \(-0.696244\pi\)
0.578198 0.815896i \(-0.303756\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 19.6060 0.648508
\(915\) −4.11684 12.7692i −0.136099 0.422136i
\(916\) −4.43070 + 7.67420i −0.146395 + 0.253563i
\(917\) −22.9783 −0.758809
\(918\) −1.11684 + 0.644810i −0.0368613 + 0.0212819i
\(919\) 3.46410i 0.114270i −0.998366 0.0571351i \(-0.981803\pi\)
0.998366 0.0571351i \(-0.0181966\pi\)
\(920\) −4.11684 + 4.55134i −0.135728 + 0.150053i
\(921\) −25.4198 44.0284i −0.837612 1.45079i
\(922\) −27.8614 + 16.0858i −0.917567 + 0.529757i
\(923\) 0.510875 0.884861i 0.0168156 0.0291256i
\(924\) 0 0
\(925\) −30.4090 + 0.543620i −0.999840 + 0.0178741i
\(926\) 4.51087 0.148237
\(927\) 26.1168 45.2357i 0.857790 1.48574i
\(928\) −6.68614 + 3.86025i −0.219483 + 0.126719i
\(929\) −18.9891 32.8901i −0.623013 1.07909i −0.988922 0.148439i \(-0.952575\pi\)
0.365909 0.930651i \(-0.380758\pi\)
\(930\) −41.7921 + 46.2029i −1.37042 + 1.51505i
\(931\) 0 0
\(932\) 12.6861 7.32435i 0.415548 0.239917i
\(933\) −47.8614 −1.56691
\(934\) 11.1861 19.3750i 0.366022 0.633968i
\(935\) 0 0
\(936\) 1.25544 0.0410353
\(937\) −42.9416 24.7923i −1.40284 0.809930i −0.408157 0.912912i \(-0.633828\pi\)
−0.994683 + 0.102982i \(0.967162\pi\)
\(938\) 14.2337 + 24.6535i 0.464746 + 0.804964i
\(939\) 71.5663i 2.33548i
\(940\) 2.37228 11.0371i 0.0773753 0.359991i
\(941\) 6.43070 11.1383i 0.209635 0.363098i −0.741965 0.670439i \(-0.766106\pi\)
0.951600 + 0.307341i \(0.0994391\pi\)
\(942\) 8.18614 14.1788i 0.266719 0.461971i
\(943\) 7.88316 + 13.6540i 0.256711 + 0.444636i
\(944\) 10.3723 5.98844i 0.337589 0.194907i
\(945\) 7.11684 + 1.52967i 0.231511 + 0.0497602i
\(946\) 0 0
\(947\) −19.9307 + 34.5210i −0.647661 + 1.12178i 0.336019 + 0.941855i \(0.390919\pi\)
−0.983680 + 0.179926i \(0.942414\pi\)
\(948\) −20.7446 −0.673752
\(949\) −2.23369 + 1.28962i −0.0725086 + 0.0418628i
\(950\) 0 0
\(951\) 33.1168 1.07389
\(952\) 4.75372i 0.154069i
\(953\) 11.4891 + 6.63325i 0.372169 + 0.214872i 0.674406 0.738361i \(-0.264400\pi\)
−0.302236 + 0.953233i \(0.597733\pi\)
\(954\) 3.16915i 0.102605i
\(955\) 40.7921 + 36.8979i 1.32000 + 1.19399i
\(956\) 9.80240i 0.317032i
\(957\) 0 0
\(958\) −31.4198 + 18.1402i −1.01513 + 0.586085i
\(959\) 4.62772 + 8.01544i 0.149437 + 0.258832i
\(960\) 1.18614 5.51856i 0.0382825 0.178111i
\(961\) −90.8179 −2.92961
\(962\) −0.186141 + 2.25684i −0.00600142 + 0.0727633i
\(963\) 12.8617i 0.414464i
\(964\) 18.0000 + 10.3923i 0.579741 + 0.334714i
\(965\) 9.94158 10.9908i 0.320031 0.353807i
\(966\) 12.0000 + 20.7846i 0.386094 + 0.668734i
\(967\) 17.1168 + 29.6472i 0.550441 + 0.953391i 0.998243 + 0.0592584i \(0.0188736\pi\)
−0.447802 + 0.894133i \(0.647793\pi\)
\(968\) −11.0000 −0.353553
\(969\) 0 0
\(970\) 8.31386 + 25.7870i 0.266942 + 0.827971i
\(971\) 8.48913 14.7036i 0.272429 0.471861i −0.697054 0.717018i \(-0.745506\pi\)
0.969483 + 0.245158i \(0.0788397\pi\)
\(972\) 22.3692i 0.717492i
\(973\) 64.9331i 2.08166i
\(974\) 1.00000 1.73205i 0.0320421 0.0554985i
\(975\) −1.93070 + 4.28384i −0.0618320 + 0.137193i
\(976\) 2.37686i 0.0760815i
\(977\) 28.1168 48.6998i 0.899538 1.55804i 0.0714512 0.997444i \(-0.477237\pi\)
0.828086 0.560601i \(-0.189430\pi\)
\(978\) 37.4198 + 21.6043i 1.19655 + 0.690831i
\(979\) 0 0
\(980\) 7.50000 8.29156i 0.239579 0.264864i
\(981\) −6.94158 + 4.00772i −0.221628 + 0.127957i
\(982\) 9.86141 17.0805i 0.314690 0.545059i
\(983\) −37.6277 21.7244i −1.20014 0.692900i −0.239552 0.970884i \(-0.577001\pi\)
−0.960586 + 0.277984i \(0.910334\pi\)
\(984\) −12.5584 7.25061i −0.400348 0.231141i
\(985\) 15.0584 4.85491i 0.479801 0.154690i
\(986\) 9.17527 5.29734i 0.292200 0.168702i
\(987\) −38.2337 22.0742i −1.21699 0.702630i
\(988\) 0 0
\(989\) −25.0217 −0.795645
\(990\) 0 0
\(991\) 6.28339i 0.199599i −0.995008 0.0997993i \(-0.968180\pi\)
0.995008 0.0997993i \(-0.0318201\pi\)
\(992\) 9.55842 5.51856i 0.303480 0.175214i
\(993\) 69.9565 2.22000
\(994\) −8.23369 + 4.75372i −0.261157 + 0.150779i
\(995\) −14.6970 13.2940i −0.465927 0.421447i
\(996\) −17.1168 29.6472i −0.542368 0.939409i
\(997\) 16.5584 28.6800i 0.524410 0.908306i −0.475186 0.879886i \(-0.657619\pi\)
0.999596 0.0284200i \(-0.00904759\pi\)
\(998\) 13.8564i 0.438617i
\(999\) 5.69702 + 0.469882i 0.180246 + 0.0148664i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 370.2.m.a.249.1 yes 4
5.4 even 2 370.2.m.b.249.2 yes 4
37.11 even 6 370.2.m.b.159.2 yes 4
185.159 even 6 inner 370.2.m.a.159.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
370.2.m.a.159.1 4 185.159 even 6 inner
370.2.m.a.249.1 yes 4 1.1 even 1 trivial
370.2.m.b.159.2 yes 4 37.11 even 6
370.2.m.b.249.2 yes 4 5.4 even 2