Properties

Label 2-370-37.21-c1-0-13
Degree 22
Conductor 370370
Sign 0.000155+0.999i-0.000155 + 0.999i
Analytic cond. 2.954462.95446
Root an. cond. 1.718851.71885
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.342 − 0.939i)2-s + (3.03 − 1.10i)3-s + (−0.766 − 0.642i)4-s + (−0.984 − 0.173i)5-s − 3.23i·6-s + (0.130 − 0.739i)7-s + (−0.866 + 0.500i)8-s + (5.70 − 4.78i)9-s + (−0.5 + 0.866i)10-s + (1.20 + 2.08i)11-s + (−3.03 − 1.10i)12-s + (−2.83 + 3.37i)13-s + (−0.650 − 0.375i)14-s + (−3.18 + 0.561i)15-s + (0.173 + 0.984i)16-s + (−0.673 − 0.803i)17-s + ⋯
L(s)  = 1  + (0.241 − 0.664i)2-s + (1.75 − 0.638i)3-s + (−0.383 − 0.321i)4-s + (−0.440 − 0.0776i)5-s − 1.31i·6-s + (0.0492 − 0.279i)7-s + (−0.306 + 0.176i)8-s + (1.90 − 1.59i)9-s + (−0.158 + 0.273i)10-s + (0.363 + 0.628i)11-s + (−0.876 − 0.319i)12-s + (−0.784 + 0.935i)13-s + (−0.173 − 0.100i)14-s + (−0.821 + 0.144i)15-s + (0.0434 + 0.246i)16-s + (−0.163 − 0.194i)17-s + ⋯

Functional equation

Λ(s)=(370s/2ΓC(s)L(s)=((0.000155+0.999i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.000155 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(370s/2ΓC(s+1/2)L(s)=((0.000155+0.999i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 370 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.000155 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 370370    =    25372 \cdot 5 \cdot 37
Sign: 0.000155+0.999i-0.000155 + 0.999i
Analytic conductor: 2.954462.95446
Root analytic conductor: 1.718851.71885
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ370(21,)\chi_{370} (21, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 370, ( :1/2), 0.000155+0.999i)(2,\ 370,\ (\ :1/2),\ -0.000155 + 0.999i)

Particular Values

L(1)L(1) \approx 1.651811.65207i1.65181 - 1.65207i
L(12)L(\frac12) \approx 1.651811.65207i1.65181 - 1.65207i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.342+0.939i)T 1 + (-0.342 + 0.939i)T
5 1+(0.984+0.173i)T 1 + (0.984 + 0.173i)T
37 1+(5.29+2.99i)T 1 + (-5.29 + 2.99i)T
good3 1+(3.03+1.10i)T+(2.291.92i)T2 1 + (-3.03 + 1.10i)T + (2.29 - 1.92i)T^{2}
7 1+(0.130+0.739i)T+(6.572.39i)T2 1 + (-0.130 + 0.739i)T + (-6.57 - 2.39i)T^{2}
11 1+(1.202.08i)T+(5.5+9.52i)T2 1 + (-1.20 - 2.08i)T + (-5.5 + 9.52i)T^{2}
13 1+(2.833.37i)T+(2.2512.8i)T2 1 + (2.83 - 3.37i)T + (-2.25 - 12.8i)T^{2}
17 1+(0.673+0.803i)T+(2.95+16.7i)T2 1 + (0.673 + 0.803i)T + (-2.95 + 16.7i)T^{2}
19 1+(1.37+3.78i)T+(14.5+12.2i)T2 1 + (1.37 + 3.78i)T + (-14.5 + 12.2i)T^{2}
23 1+(2.421.40i)T+(11.5+19.9i)T2 1 + (-2.42 - 1.40i)T + (11.5 + 19.9i)T^{2}
29 1+(5.433.13i)T+(14.525.1i)T2 1 + (5.43 - 3.13i)T + (14.5 - 25.1i)T^{2}
31 110.5iT31T2 1 - 10.5iT - 31T^{2}
41 1+(6.67+5.59i)T+(7.11+40.3i)T2 1 + (6.67 + 5.59i)T + (7.11 + 40.3i)T^{2}
43 16.19iT43T2 1 - 6.19iT - 43T^{2}
47 1+(1.01+1.76i)T+(23.540.7i)T2 1 + (-1.01 + 1.76i)T + (-23.5 - 40.7i)T^{2}
53 1+(0.3131.77i)T+(49.8+18.1i)T2 1 + (-0.313 - 1.77i)T + (-49.8 + 18.1i)T^{2}
59 1+(5.19+0.916i)T+(55.420.1i)T2 1 + (-5.19 + 0.916i)T + (55.4 - 20.1i)T^{2}
61 1+(6.70+7.98i)T+(10.560.0i)T2 1 + (-6.70 + 7.98i)T + (-10.5 - 60.0i)T^{2}
67 1+(0.1440.820i)T+(62.922.9i)T2 1 + (0.144 - 0.820i)T + (-62.9 - 22.9i)T^{2}
71 1+(14.15.15i)T+(54.345.6i)T2 1 + (14.1 - 5.15i)T + (54.3 - 45.6i)T^{2}
73 1+2.93T+73T2 1 + 2.93T + 73T^{2}
79 1+(7.33+1.29i)T+(74.2+27.0i)T2 1 + (7.33 + 1.29i)T + (74.2 + 27.0i)T^{2}
83 1+(3.30+2.77i)T+(14.481.7i)T2 1 + (-3.30 + 2.77i)T + (14.4 - 81.7i)T^{2}
89 1+(13.82.43i)T+(83.630.4i)T2 1 + (13.8 - 2.43i)T + (83.6 - 30.4i)T^{2}
97 1+(3.562.05i)T+(48.5+84.0i)T2 1 + (-3.56 - 2.05i)T + (48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.34207348682325376245377493114, −10.03981251870544168212313889430, −9.149962203642225313137040126739, −8.672424516974074227739199346710, −7.30799408686354881782644381400, −6.94990927770477433062854290329, −4.72888112997376833318795747664, −3.80138245452446769701476272020, −2.69884218255453287285036696783, −1.59568043697594910680473416229, 2.50732300401944597452733146494, 3.58477055598346365970824975802, 4.40714072176432070206307398827, 5.75082969928043520198765973238, 7.28882188846954998085426961735, 8.037829238447073534527240462939, 8.617136327553931455590084274987, 9.564750896622276423249593309503, 10.34597313185570058924709313858, 11.69409276457493748180815893237

Graph of the ZZ-function along the critical line