L(s) = 1 | + (0.342 − 0.939i)2-s + (3.03 − 1.10i)3-s + (−0.766 − 0.642i)4-s + (−0.984 − 0.173i)5-s − 3.23i·6-s + (0.130 − 0.739i)7-s + (−0.866 + 0.500i)8-s + (5.70 − 4.78i)9-s + (−0.5 + 0.866i)10-s + (1.20 + 2.08i)11-s + (−3.03 − 1.10i)12-s + (−2.83 + 3.37i)13-s + (−0.650 − 0.375i)14-s + (−3.18 + 0.561i)15-s + (0.173 + 0.984i)16-s + (−0.673 − 0.803i)17-s + ⋯ |
L(s) = 1 | + (0.241 − 0.664i)2-s + (1.75 − 0.638i)3-s + (−0.383 − 0.321i)4-s + (−0.440 − 0.0776i)5-s − 1.31i·6-s + (0.0492 − 0.279i)7-s + (−0.306 + 0.176i)8-s + (1.90 − 1.59i)9-s + (−0.158 + 0.273i)10-s + (0.363 + 0.628i)11-s + (−0.876 − 0.319i)12-s + (−0.784 + 0.935i)13-s + (−0.173 − 0.100i)14-s + (−0.821 + 0.144i)15-s + (0.0434 + 0.246i)16-s + (−0.163 − 0.194i)17-s + ⋯ |
Λ(s)=(=(370s/2ΓC(s)L(s)(−0.000155+0.999i)Λ(2−s)
Λ(s)=(=(370s/2ΓC(s+1/2)L(s)(−0.000155+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
370
= 2⋅5⋅37
|
Sign: |
−0.000155+0.999i
|
Analytic conductor: |
2.95446 |
Root analytic conductor: |
1.71885 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ370(21,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 370, ( :1/2), −0.000155+0.999i)
|
Particular Values
L(1) |
≈ |
1.65181−1.65207i |
L(21) |
≈ |
1.65181−1.65207i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.342+0.939i)T |
| 5 | 1+(0.984+0.173i)T |
| 37 | 1+(−5.29+2.99i)T |
good | 3 | 1+(−3.03+1.10i)T+(2.29−1.92i)T2 |
| 7 | 1+(−0.130+0.739i)T+(−6.57−2.39i)T2 |
| 11 | 1+(−1.20−2.08i)T+(−5.5+9.52i)T2 |
| 13 | 1+(2.83−3.37i)T+(−2.25−12.8i)T2 |
| 17 | 1+(0.673+0.803i)T+(−2.95+16.7i)T2 |
| 19 | 1+(1.37+3.78i)T+(−14.5+12.2i)T2 |
| 23 | 1+(−2.42−1.40i)T+(11.5+19.9i)T2 |
| 29 | 1+(5.43−3.13i)T+(14.5−25.1i)T2 |
| 31 | 1−10.5iT−31T2 |
| 41 | 1+(6.67+5.59i)T+(7.11+40.3i)T2 |
| 43 | 1−6.19iT−43T2 |
| 47 | 1+(−1.01+1.76i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−0.313−1.77i)T+(−49.8+18.1i)T2 |
| 59 | 1+(−5.19+0.916i)T+(55.4−20.1i)T2 |
| 61 | 1+(−6.70+7.98i)T+(−10.5−60.0i)T2 |
| 67 | 1+(0.144−0.820i)T+(−62.9−22.9i)T2 |
| 71 | 1+(14.1−5.15i)T+(54.3−45.6i)T2 |
| 73 | 1+2.93T+73T2 |
| 79 | 1+(7.33+1.29i)T+(74.2+27.0i)T2 |
| 83 | 1+(−3.30+2.77i)T+(14.4−81.7i)T2 |
| 89 | 1+(13.8−2.43i)T+(83.6−30.4i)T2 |
| 97 | 1+(−3.56−2.05i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.34207348682325376245377493114, −10.03981251870544168212313889430, −9.149962203642225313137040126739, −8.672424516974074227739199346710, −7.30799408686354881782644381400, −6.94990927770477433062854290329, −4.72888112997376833318795747664, −3.80138245452446769701476272020, −2.69884218255453287285036696783, −1.59568043697594910680473416229,
2.50732300401944597452733146494, 3.58477055598346365970824975802, 4.40714072176432070206307398827, 5.75082969928043520198765973238, 7.28882188846954998085426961735, 8.037829238447073534527240462939, 8.617136327553931455590084274987, 9.564750896622276423249593309503, 10.34597313185570058924709313858, 11.69409276457493748180815893237