L(s) = 1 | + 2-s − 3-s + 4-s − 6-s − 2.92·7-s + 8-s + 9-s + 0.190·11-s − 12-s − 0.310·13-s − 2.92·14-s + 16-s − 6.04·17-s + 18-s + 3.23·19-s + 2.92·21-s + 0.190·22-s − 4.47·23-s − 24-s − 0.310·26-s − 27-s − 2.92·28-s + 6.81·29-s − 1.69·31-s + 32-s − 0.190·33-s − 6.04·34-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 0.5·4-s − 0.408·6-s − 1.10·7-s + 0.353·8-s + 0.333·9-s + 0.0573·11-s − 0.288·12-s − 0.0859·13-s − 0.782·14-s + 0.250·16-s − 1.46·17-s + 0.235·18-s + 0.742·19-s + 0.638·21-s + 0.0405·22-s − 0.932·23-s − 0.204·24-s − 0.0608·26-s − 0.192·27-s − 0.553·28-s + 1.26·29-s − 0.303·31-s + 0.176·32-s − 0.0331·33-s − 1.03·34-s + ⋯ |
Λ(s)=(=(3750s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3750s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.900857095 |
L(21) |
≈ |
1.900857095 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1+T |
| 5 | 1 |
good | 7 | 1+2.92T+7T2 |
| 11 | 1−0.190T+11T2 |
| 13 | 1+0.310T+13T2 |
| 17 | 1+6.04T+17T2 |
| 19 | 1−3.23T+19T2 |
| 23 | 1+4.47T+23T2 |
| 29 | 1−6.81T+29T2 |
| 31 | 1+1.69T+31T2 |
| 37 | 1−9.75T+37T2 |
| 41 | 1−5.07T+41T2 |
| 43 | 1−10.2T+43T2 |
| 47 | 1−10.7T+47T2 |
| 53 | 1+9.97T+53T2 |
| 59 | 1−7.42T+59T2 |
| 61 | 1+5.54T+61T2 |
| 67 | 1−15.0T+67T2 |
| 71 | 1−6.85T+71T2 |
| 73 | 1+11.6T+73T2 |
| 79 | 1−1.57T+79T2 |
| 83 | 1+13.0T+83T2 |
| 89 | 1+9.28T+89T2 |
| 97 | 1+1.73T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.478650524781573919486283580735, −7.48250963862956513260223168254, −6.84566374486949161007670124423, −6.12948579067348350442650719616, −5.72588288672056724278056191451, −4.56013428145610897912324457738, −4.10980112453575596757600651156, −3.02430891941891840023118308040, −2.24210311114820638125546752923, −0.72214120844711079340142348256,
0.72214120844711079340142348256, 2.24210311114820638125546752923, 3.02430891941891840023118308040, 4.10980112453575596757600651156, 4.56013428145610897912324457738, 5.72588288672056724278056191451, 6.12948579067348350442650719616, 6.84566374486949161007670124423, 7.48250963862956513260223168254, 8.478650524781573919486283580735