Properties

Label 3750.2.a.q
Level $3750$
Weight $2$
Character orbit 3750.a
Self dual yes
Analytic conductor $29.944$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3750,2,Mod(1,3750)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3750, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3750.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3750 = 2 \cdot 3 \cdot 5^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3750.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.9439007580\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.32625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 19x^{2} + 4x + 76 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 150)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - q^{3} + q^{4} - q^{6} + \beta_1 q^{7} + q^{8} + q^{9} + ( - \beta_{3} - \beta_1 + 2) q^{11} - q^{12} + ( - \beta_{2} + \beta_1 + 1) q^{13} + \beta_1 q^{14} + q^{16} + ( - \beta_{3} - \beta_{2} + \beta_1) q^{17}+ \cdots + ( - \beta_{3} - \beta_1 + 2) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 4 q^{3} + 4 q^{4} - 4 q^{6} + q^{7} + 4 q^{8} + 4 q^{9} + 5 q^{11} - 4 q^{12} + 7 q^{13} + q^{14} + 4 q^{16} + q^{17} + 4 q^{18} + 4 q^{19} - q^{21} + 5 q^{22} - 4 q^{24} + 7 q^{26}+ \cdots + 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 19x^{2} + 4x + 76 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 3\nu^{2} - 9\nu + 18 ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 5\nu^{2} + 7\nu - 38 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 2\beta_{2} + \beta _1 + 10 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{3} + 10\beta_{2} + 12\beta _1 + 12 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.92807
−2.63925
2.31003
4.25729
1.00000 −1.00000 1.00000 0 −1.00000 −2.92807 1.00000 1.00000 0
1.2 1.00000 −1.00000 1.00000 0 −1.00000 −2.63925 1.00000 1.00000 0
1.3 1.00000 −1.00000 1.00000 0 −1.00000 2.31003 1.00000 1.00000 0
1.4 1.00000 −1.00000 1.00000 0 −1.00000 4.25729 1.00000 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3750.2.a.q 4
5.b even 2 1 3750.2.a.l 4
5.c odd 4 2 3750.2.c.h 8
25.d even 5 2 750.2.g.d 8
25.e even 10 2 150.2.g.c 8
25.f odd 20 4 750.2.h.e 16
75.h odd 10 2 450.2.h.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
150.2.g.c 8 25.e even 10 2
450.2.h.d 8 75.h odd 10 2
750.2.g.d 8 25.d even 5 2
750.2.h.e 16 25.f odd 20 4
3750.2.a.l 4 5.b even 2 1
3750.2.a.q 4 1.a even 1 1 trivial
3750.2.c.h 8 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{4} - T_{7}^{3} - 19T_{7}^{2} + 4T_{7} + 76 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3750))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{4} \) Copy content Toggle raw display
$3$ \( (T + 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - T^{3} + \cdots + 76 \) Copy content Toggle raw display
$11$ \( T^{4} - 5 T^{3} + \cdots - 20 \) Copy content Toggle raw display
$13$ \( T^{4} - 7 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$17$ \( T^{4} - T^{3} + \cdots + 76 \) Copy content Toggle raw display
$19$ \( (T^{2} - 2 T - 4)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 20)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} - 11 T^{3} + \cdots - 1364 \) Copy content Toggle raw display
$31$ \( T^{4} + 3 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$37$ \( T^{4} + 13 T^{3} + \cdots - 3344 \) Copy content Toggle raw display
$41$ \( T^{4} - 21 T^{3} + \cdots - 44 \) Copy content Toggle raw display
$43$ \( T^{4} - 16 T^{3} + \cdots - 1424 \) Copy content Toggle raw display
$47$ \( T^{4} - 100 T^{2} + \cdots + 880 \) Copy content Toggle raw display
$53$ \( T^{4} + 26 T^{3} + \cdots - 9239 \) Copy content Toggle raw display
$59$ \( T^{4} - 25 T^{3} + \cdots - 1520 \) Copy content Toggle raw display
$61$ \( T^{4} + 5 T^{3} + \cdots - 20 \) Copy content Toggle raw display
$67$ \( T^{4} - 26 T^{3} + \cdots - 2624 \) Copy content Toggle raw display
$71$ \( T^{4} - 10 T^{3} + \cdots - 320 \) Copy content Toggle raw display
$73$ \( T^{4} + 3 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$79$ \( T^{4} - 27 T^{3} + \cdots + 576 \) Copy content Toggle raw display
$83$ \( T^{4} + 13 T^{3} + \cdots - 1004 \) Copy content Toggle raw display
$89$ \( T^{4} + 3 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$97$ \( T^{4} - 22 T^{3} + \cdots + 361 \) Copy content Toggle raw display
show more
show less