L(s) = 1 | + (−1.40 − 1.01i)2-s + (0.618 + 1.90i)4-s + (0.809 − 0.587i)5-s + (0.535 + 1.64i)7-s + (0.535 − 1.64i)8-s + (−0.809 − 0.587i)9-s − 1.73·10-s + (0.927 − 2.85i)14-s + (−0.809 + 0.587i)16-s + (0.535 + 1.64i)18-s + (−0.535 + 1.64i)19-s + (1.61 + 1.17i)20-s + (−2.80 + 2.03i)28-s + (0.809 + 0.587i)31-s + (1.40 + 1.01i)35-s + (0.618 − 1.90i)36-s + ⋯ |
L(s) = 1 | + (−1.40 − 1.01i)2-s + (0.618 + 1.90i)4-s + (0.809 − 0.587i)5-s + (0.535 + 1.64i)7-s + (0.535 − 1.64i)8-s + (−0.809 − 0.587i)9-s − 1.73·10-s + (0.927 − 2.85i)14-s + (−0.809 + 0.587i)16-s + (0.535 + 1.64i)18-s + (−0.535 + 1.64i)19-s + (1.61 + 1.17i)20-s + (−2.80 + 2.03i)28-s + (0.809 + 0.587i)31-s + (1.40 + 1.01i)35-s + (0.618 − 1.90i)36-s + ⋯ |
Λ(s)=(=(3751s/2ΓC(s)L(s)(0.970−0.242i)Λ(1−s)
Λ(s)=(=(3751s/2ΓC(s)L(s)(0.970−0.242i)Λ(1−s)
Degree: |
2 |
Conductor: |
3751
= 112⋅31
|
Sign: |
0.970−0.242i
|
Analytic conductor: |
1.87199 |
Root analytic conductor: |
1.36820 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3751(2138,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3751, ( :0), 0.970−0.242i)
|
Particular Values
L(21) |
≈ |
0.6345986640 |
L(21) |
≈ |
0.6345986640 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1 |
| 31 | 1+(−0.809−0.587i)T |
good | 2 | 1+(1.40+1.01i)T+(0.309+0.951i)T2 |
| 3 | 1+(0.809+0.587i)T2 |
| 5 | 1+(−0.809+0.587i)T+(0.309−0.951i)T2 |
| 7 | 1+(−0.535−1.64i)T+(−0.809+0.587i)T2 |
| 13 | 1+(−0.309−0.951i)T2 |
| 17 | 1+(−0.309+0.951i)T2 |
| 19 | 1+(0.535−1.64i)T+(−0.809−0.587i)T2 |
| 23 | 1−T2 |
| 29 | 1+(0.809−0.587i)T2 |
| 37 | 1+(0.809−0.587i)T2 |
| 41 | 1+(−0.535+1.64i)T+(−0.809−0.587i)T2 |
| 43 | 1−T2 |
| 47 | 1+(0.618−1.90i)T+(−0.809−0.587i)T2 |
| 53 | 1+(−0.309−0.951i)T2 |
| 59 | 1+(0.309+0.951i)T+(−0.809+0.587i)T2 |
| 61 | 1+(−0.309+0.951i)T2 |
| 67 | 1−2T+T2 |
| 71 | 1+(0.809−0.587i)T+(0.309−0.951i)T2 |
| 73 | 1+(0.809−0.587i)T2 |
| 79 | 1+(−0.309−0.951i)T2 |
| 83 | 1+(−0.309+0.951i)T2 |
| 89 | 1−T2 |
| 97 | 1+(0.809+0.587i)T+(0.309+0.951i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.936820598108857011038521102311, −8.302588877921286383729202625129, −7.85894084442959952010750319803, −6.42418836423329217658961449576, −5.76444895518419845895684171301, −5.12785392892484194511481306787, −3.71408830843398440911656233467, −2.72280924965996263969254149150, −2.07569922146852978140872121071, −1.29529551624338625621673305677,
0.60784486415046477133004991480, 1.83401187027954727115620945304, 2.84622676423438866821377833543, 4.31502272736247905218838822685, 5.14503307762853046966170796817, 6.06710692494691351950645116476, 6.75136668097471402435084712749, 7.15749124876104216449666753112, 8.039034842801785065152782019965, 8.394626152332640779432923798448