L(s) = 1 | + (−1.40 − 1.01i)2-s + (0.618 + 1.90i)4-s + (0.809 − 0.587i)5-s + (0.535 + 1.64i)7-s + (0.535 − 1.64i)8-s + (−0.809 − 0.587i)9-s − 1.73·10-s + (0.927 − 2.85i)14-s + (−0.809 + 0.587i)16-s + (0.535 + 1.64i)18-s + (−0.535 + 1.64i)19-s + (1.61 + 1.17i)20-s + (−2.80 + 2.03i)28-s + (0.809 + 0.587i)31-s + (1.40 + 1.01i)35-s + (0.618 − 1.90i)36-s + ⋯ |
L(s) = 1 | + (−1.40 − 1.01i)2-s + (0.618 + 1.90i)4-s + (0.809 − 0.587i)5-s + (0.535 + 1.64i)7-s + (0.535 − 1.64i)8-s + (−0.809 − 0.587i)9-s − 1.73·10-s + (0.927 − 2.85i)14-s + (−0.809 + 0.587i)16-s + (0.535 + 1.64i)18-s + (−0.535 + 1.64i)19-s + (1.61 + 1.17i)20-s + (−2.80 + 2.03i)28-s + (0.809 + 0.587i)31-s + (1.40 + 1.01i)35-s + (0.618 − 1.90i)36-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.970 - 0.242i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3751 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.970 - 0.242i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6345986640\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6345986640\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 11 | \( 1 \) |
| 31 | \( 1 + (-0.809 - 0.587i)T \) |
good | 2 | \( 1 + (1.40 + 1.01i)T + (0.309 + 0.951i)T^{2} \) |
| 3 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 5 | \( 1 + (-0.809 + 0.587i)T + (0.309 - 0.951i)T^{2} \) |
| 7 | \( 1 + (-0.535 - 1.64i)T + (-0.809 + 0.587i)T^{2} \) |
| 13 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 17 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 19 | \( 1 + (0.535 - 1.64i)T + (-0.809 - 0.587i)T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 41 | \( 1 + (-0.535 + 1.64i)T + (-0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.618 - 1.90i)T + (-0.809 - 0.587i)T^{2} \) |
| 53 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 59 | \( 1 + (0.309 + 0.951i)T + (-0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 67 | \( 1 - 2T + T^{2} \) |
| 71 | \( 1 + (0.809 - 0.587i)T + (0.309 - 0.951i)T^{2} \) |
| 73 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 79 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.809 + 0.587i)T + (0.309 + 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.936820598108857011038521102311, −8.302588877921286383729202625129, −7.85894084442959952010750319803, −6.42418836423329217658961449576, −5.76444895518419845895684171301, −5.12785392892484194511481306787, −3.71408830843398440911656233467, −2.72280924965996263969254149150, −2.07569922146852978140872121071, −1.29529551624338625621673305677,
0.60784486415046477133004991480, 1.83401187027954727115620945304, 2.84622676423438866821377833543, 4.31502272736247905218838822685, 5.14503307762853046966170796817, 6.06710692494691351950645116476, 6.75136668097471402435084712749, 7.15749124876104216449666753112, 8.039034842801785065152782019965, 8.394626152332640779432923798448