Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3751,1,Mod(2138,3751)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3751, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([2, 5]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3751.2138");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 3751.t (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | 8.0.324000000.3 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Projective image: | |
Projective field: | Galois closure of 6.0.1279091.1 |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2138.1 |
|
−1.40126 | − | 1.01807i | 0 | 0.618034 | + | 1.90211i | 0.809017 | − | 0.587785i | 0 | 0.535233 | + | 1.64728i | 0.535233 | − | 1.64728i | −0.809017 | − | 0.587785i | −1.73205 | ||||||||||||||||||||||||||||||
2138.2 | 1.40126 | + | 1.01807i | 0 | 0.618034 | + | 1.90211i | 0.809017 | − | 0.587785i | 0 | −0.535233 | − | 1.64728i | −0.535233 | + | 1.64728i | −0.809017 | − | 0.587785i | 1.73205 | |||||||||||||||||||||||||||||||
2665.1 | −1.40126 | + | 1.01807i | 0 | 0.618034 | − | 1.90211i | 0.809017 | + | 0.587785i | 0 | 0.535233 | − | 1.64728i | 0.535233 | + | 1.64728i | −0.809017 | + | 0.587785i | −1.73205 | |||||||||||||||||||||||||||||||
2665.2 | 1.40126 | − | 1.01807i | 0 | 0.618034 | − | 1.90211i | 0.809017 | + | 0.587785i | 0 | −0.535233 | + | 1.64728i | −0.535233 | − | 1.64728i | −0.809017 | + | 0.587785i | 1.73205 | |||||||||||||||||||||||||||||||
2913.1 | −0.535233 | + | 1.64728i | 0 | −1.61803 | − | 1.17557i | −0.309017 | − | 0.951057i | 0 | 1.40126 | + | 1.01807i | 1.40126 | − | 1.01807i | 0.309017 | − | 0.951057i | 1.73205 | |||||||||||||||||||||||||||||||
2913.2 | 0.535233 | − | 1.64728i | 0 | −1.61803 | − | 1.17557i | −0.309017 | − | 0.951057i | 0 | −1.40126 | − | 1.01807i | −1.40126 | + | 1.01807i | 0.309017 | − | 0.951057i | −1.73205 | |||||||||||||||||||||||||||||||
3657.1 | −0.535233 | − | 1.64728i | 0 | −1.61803 | + | 1.17557i | −0.309017 | + | 0.951057i | 0 | 1.40126 | − | 1.01807i | 1.40126 | + | 1.01807i | 0.309017 | + | 0.951057i | 1.73205 | |||||||||||||||||||||||||||||||
3657.2 | 0.535233 | + | 1.64728i | 0 | −1.61803 | + | 1.17557i | −0.309017 | + | 0.951057i | 0 | −1.40126 | + | 1.01807i | −1.40126 | − | 1.01807i | 0.309017 | + | 0.951057i | −1.73205 | |||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
31.b | odd | 2 | 1 | CM by |
11.b | odd | 2 | 1 | inner |
11.c | even | 5 | 3 | inner |
11.d | odd | 10 | 3 | inner |
341.b | even | 2 | 1 | inner |
341.t | odd | 10 | 3 | inner |
341.ba | even | 10 | 3 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3751.1.t.d | 8 | |
11.b | odd | 2 | 1 | inner | 3751.1.t.d | 8 | |
11.c | even | 5 | 1 | 3751.1.d.c | ✓ | 2 | |
11.c | even | 5 | 3 | inner | 3751.1.t.d | 8 | |
11.d | odd | 10 | 1 | 3751.1.d.c | ✓ | 2 | |
11.d | odd | 10 | 3 | inner | 3751.1.t.d | 8 | |
31.b | odd | 2 | 1 | CM | 3751.1.t.d | 8 | |
341.b | even | 2 | 1 | inner | 3751.1.t.d | 8 | |
341.t | odd | 10 | 1 | 3751.1.d.c | ✓ | 2 | |
341.t | odd | 10 | 3 | inner | 3751.1.t.d | 8 | |
341.ba | even | 10 | 1 | 3751.1.d.c | ✓ | 2 | |
341.ba | even | 10 | 3 | inner | 3751.1.t.d | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
3751.1.d.c | ✓ | 2 | 11.c | even | 5 | 1 | |
3751.1.d.c | ✓ | 2 | 11.d | odd | 10 | 1 | |
3751.1.d.c | ✓ | 2 | 341.t | odd | 10 | 1 | |
3751.1.d.c | ✓ | 2 | 341.ba | even | 10 | 1 | |
3751.1.t.d | 8 | 1.a | even | 1 | 1 | trivial | |
3751.1.t.d | 8 | 11.b | odd | 2 | 1 | inner | |
3751.1.t.d | 8 | 11.c | even | 5 | 3 | inner | |
3751.1.t.d | 8 | 11.d | odd | 10 | 3 | inner | |
3751.1.t.d | 8 | 31.b | odd | 2 | 1 | CM | |
3751.1.t.d | 8 | 341.b | even | 2 | 1 | inner | |
3751.1.t.d | 8 | 341.t | odd | 10 | 3 | inner | |
3751.1.t.d | 8 | 341.ba | even | 10 | 3 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .