Properties

Label 3751.1.t.d
Level 37513751
Weight 11
Character orbit 3751.t
Analytic conductor 1.8721.872
Analytic rank 00
Dimension 88
Projective image D6D_{6}
CM discriminant -31
Inner twists 1616

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3751,1,Mod(2138,3751)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3751, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([2, 5]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3751.2138");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3751=11231 3751 = 11^{2} \cdot 31
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3751.t (of order 1010, degree 44, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.871992862391.87199286239
Analytic rank: 00
Dimension: 88
Relative dimension: 22 over Q(ζ10)\Q(\zeta_{10})
Coefficient field: 8.0.324000000.3
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+3x6+9x4+27x2+81 x^{8} + 3x^{6} + 9x^{4} + 27x^{2} + 81 Copy content Toggle raw display
Coefficient ring: Z[a1,,a4]\Z[a_1, \ldots, a_{4}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D6D_{6}
Projective field: Galois closure of 6.0.1279091.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ7q2+2β4q4+(β6+β4+β2+1)q5+(β7+β5+β3+β1)q7β1q8+β2q9+β5q10+3β6q14+2β5q98+O(q100) q - \beta_{7} q^{2} + 2 \beta_{4} q^{4} + (\beta_{6} + \beta_{4} + \beta_{2} + 1) q^{5} + (\beta_{7} + \beta_{5} + \beta_{3} + \beta_1) q^{7} - \beta_1 q^{8} + \beta_{2} q^{9} + \beta_{5} q^{10} + 3 \beta_{6} q^{14}+ \cdots - 2 \beta_{5} q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q4q4+2q52q96q142q16+4q20+2q314q36+6q388q45+4q474q49+24q56+2q59+2q64+16q67+6q702q71+2q80+2q97+O(q100) 8 q - 4 q^{4} + 2 q^{5} - 2 q^{9} - 6 q^{14} - 2 q^{16} + 4 q^{20} + 2 q^{31} - 4 q^{36} + 6 q^{38} - 8 q^{45} + 4 q^{47} - 4 q^{49} + 24 q^{56} + 2 q^{59} + 2 q^{64} + 16 q^{67} + 6 q^{70} - 2 q^{71} + 2 q^{80}+ \cdots - 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8+3x6+9x4+27x2+81 x^{8} + 3x^{6} + 9x^{4} + 27x^{2} + 81 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/3 ( \nu^{2} ) / 3 Copy content Toggle raw display
β3\beta_{3}== (ν3)/3 ( \nu^{3} ) / 3 Copy content Toggle raw display
β4\beta_{4}== (ν4)/9 ( \nu^{4} ) / 9 Copy content Toggle raw display
β5\beta_{5}== (ν5)/9 ( \nu^{5} ) / 9 Copy content Toggle raw display
β6\beta_{6}== (ν6)/27 ( \nu^{6} ) / 27 Copy content Toggle raw display
β7\beta_{7}== (ν7)/27 ( \nu^{7} ) / 27 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 3β2 3\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 3β3 3\beta_{3} Copy content Toggle raw display
ν4\nu^{4}== 9β4 9\beta_{4} Copy content Toggle raw display
ν5\nu^{5}== 9β5 9\beta_{5} Copy content Toggle raw display
ν6\nu^{6}== 27β6 27\beta_{6} Copy content Toggle raw display
ν7\nu^{7}== 27β7 27\beta_{7} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3751Z)×\left(\mathbb{Z}/3751\mathbb{Z}\right)^\times.

nn 24212421 25432543
χ(n)\chi(n) 1-1 β4\beta_{4}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
2138.1
−0.535233 + 1.64728i
0.535233 1.64728i
−0.535233 1.64728i
0.535233 + 1.64728i
−1.40126 + 1.01807i
1.40126 1.01807i
−1.40126 1.01807i
1.40126 + 1.01807i
−1.40126 1.01807i 0 0.618034 + 1.90211i 0.809017 0.587785i 0 0.535233 + 1.64728i 0.535233 1.64728i −0.809017 0.587785i −1.73205
2138.2 1.40126 + 1.01807i 0 0.618034 + 1.90211i 0.809017 0.587785i 0 −0.535233 1.64728i −0.535233 + 1.64728i −0.809017 0.587785i 1.73205
2665.1 −1.40126 + 1.01807i 0 0.618034 1.90211i 0.809017 + 0.587785i 0 0.535233 1.64728i 0.535233 + 1.64728i −0.809017 + 0.587785i −1.73205
2665.2 1.40126 1.01807i 0 0.618034 1.90211i 0.809017 + 0.587785i 0 −0.535233 + 1.64728i −0.535233 1.64728i −0.809017 + 0.587785i 1.73205
2913.1 −0.535233 + 1.64728i 0 −1.61803 1.17557i −0.309017 0.951057i 0 1.40126 + 1.01807i 1.40126 1.01807i 0.309017 0.951057i 1.73205
2913.2 0.535233 1.64728i 0 −1.61803 1.17557i −0.309017 0.951057i 0 −1.40126 1.01807i −1.40126 + 1.01807i 0.309017 0.951057i −1.73205
3657.1 −0.535233 1.64728i 0 −1.61803 + 1.17557i −0.309017 + 0.951057i 0 1.40126 1.01807i 1.40126 + 1.01807i 0.309017 + 0.951057i 1.73205
3657.2 0.535233 + 1.64728i 0 −1.61803 + 1.17557i −0.309017 + 0.951057i 0 −1.40126 + 1.01807i −1.40126 1.01807i 0.309017 + 0.951057i −1.73205
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2138.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
31.b odd 2 1 CM by Q(31)\Q(\sqrt{-31})
11.b odd 2 1 inner
11.c even 5 3 inner
11.d odd 10 3 inner
341.b even 2 1 inner
341.t odd 10 3 inner
341.ba even 10 3 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3751.1.t.d 8
11.b odd 2 1 inner 3751.1.t.d 8
11.c even 5 1 3751.1.d.c 2
11.c even 5 3 inner 3751.1.t.d 8
11.d odd 10 1 3751.1.d.c 2
11.d odd 10 3 inner 3751.1.t.d 8
31.b odd 2 1 CM 3751.1.t.d 8
341.b even 2 1 inner 3751.1.t.d 8
341.t odd 10 1 3751.1.d.c 2
341.t odd 10 3 inner 3751.1.t.d 8
341.ba even 10 1 3751.1.d.c 2
341.ba even 10 3 inner 3751.1.t.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3751.1.d.c 2 11.c even 5 1
3751.1.d.c 2 11.d odd 10 1
3751.1.d.c 2 341.t odd 10 1
3751.1.d.c 2 341.ba even 10 1
3751.1.t.d 8 1.a even 1 1 trivial
3751.1.t.d 8 11.b odd 2 1 inner
3751.1.t.d 8 11.c even 5 3 inner
3751.1.t.d 8 11.d odd 10 3 inner
3751.1.t.d 8 31.b odd 2 1 CM
3751.1.t.d 8 341.b even 2 1 inner
3751.1.t.d 8 341.t odd 10 3 inner
3751.1.t.d 8 341.ba even 10 3 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T28+3T26+9T24+27T22+81 T_{2}^{8} + 3T_{2}^{6} + 9T_{2}^{4} + 27T_{2}^{2} + 81 acting on S1new(3751,[χ])S_{1}^{\mathrm{new}}(3751, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8+3T6++81 T^{8} + 3 T^{6} + \cdots + 81 Copy content Toggle raw display
33 T8 T^{8} Copy content Toggle raw display
55 (T4T3+T2++1)2 (T^{4} - T^{3} + T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
77 T8+3T6++81 T^{8} + 3 T^{6} + \cdots + 81 Copy content Toggle raw display
1111 T8 T^{8} Copy content Toggle raw display
1313 T8 T^{8} Copy content Toggle raw display
1717 T8 T^{8} Copy content Toggle raw display
1919 T8+3T6++81 T^{8} + 3 T^{6} + \cdots + 81 Copy content Toggle raw display
2323 T8 T^{8} Copy content Toggle raw display
2929 T8 T^{8} Copy content Toggle raw display
3131 (T4T3+T2++1)2 (T^{4} - T^{3} + T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
3737 T8 T^{8} Copy content Toggle raw display
4141 T8+3T6++81 T^{8} + 3 T^{6} + \cdots + 81 Copy content Toggle raw display
4343 T8 T^{8} Copy content Toggle raw display
4747 (T42T3+4T2++16)2 (T^{4} - 2 T^{3} + 4 T^{2} + \cdots + 16)^{2} Copy content Toggle raw display
5353 T8 T^{8} Copy content Toggle raw display
5959 (T4T3+T2++1)2 (T^{4} - T^{3} + T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
6161 T8 T^{8} Copy content Toggle raw display
6767 (T2)8 (T - 2)^{8} Copy content Toggle raw display
7171 (T4+T3+T2++1)2 (T^{4} + T^{3} + T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
7373 T8 T^{8} Copy content Toggle raw display
7979 T8 T^{8} Copy content Toggle raw display
8383 T8 T^{8} Copy content Toggle raw display
8989 T8 T^{8} Copy content Toggle raw display
9797 (T4+T3+T2++1)2 (T^{4} + T^{3} + T^{2} + \cdots + 1)^{2} Copy content Toggle raw display
show more
show less