L(s) = 1 | + 2-s + 4-s + 3.98·5-s + 0.391i·7-s + 8-s + 3.98·10-s + (−2.34 − 2.34i)11-s + 0.870·13-s + 0.391i·14-s + 16-s − 5.35i·17-s + (−4.11 + 1.45i)19-s + 3.98·20-s + (−2.34 − 2.34i)22-s − 2.08·23-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s + 1.78·5-s + 0.148i·7-s + 0.353·8-s + 1.26·10-s + (−0.706 − 0.707i)11-s + 0.241·13-s + 0.104i·14-s + 0.250·16-s − 1.29i·17-s + (−0.942 + 0.332i)19-s + 0.890·20-s + (−0.499 − 0.500i)22-s − 0.435·23-s + ⋯ |
Λ(s)=(=(3762s/2ΓC(s)L(s)(0.902+0.431i)Λ(2−s)
Λ(s)=(=(3762s/2ΓC(s+1/2)L(s)(0.902+0.431i)Λ(1−s)
Degree: |
2 |
Conductor: |
3762
= 2⋅32⋅11⋅19
|
Sign: |
0.902+0.431i
|
Analytic conductor: |
30.0397 |
Root analytic conductor: |
5.48085 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3762(2089,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3762, ( :1/2), 0.902+0.431i)
|
Particular Values
L(1) |
≈ |
4.221886528 |
L(21) |
≈ |
4.221886528 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 11 | 1+(2.34+2.34i)T |
| 19 | 1+(4.11−1.45i)T |
good | 5 | 1−3.98T+5T2 |
| 7 | 1−0.391iT−7T2 |
| 13 | 1−0.870T+13T2 |
| 17 | 1+5.35iT−17T2 |
| 23 | 1+2.08T+23T2 |
| 29 | 1−8.28T+29T2 |
| 31 | 1−5.16iT−31T2 |
| 37 | 1+7.83iT−37T2 |
| 41 | 1−3.44T+41T2 |
| 43 | 1+11.5iT−43T2 |
| 47 | 1−12.6T+47T2 |
| 53 | 1+1.51iT−53T2 |
| 59 | 1−11.2iT−59T2 |
| 61 | 1+0.200iT−61T2 |
| 67 | 1+10.3iT−67T2 |
| 71 | 1−11.8iT−71T2 |
| 73 | 1−4.05iT−73T2 |
| 79 | 1+1.63T+79T2 |
| 83 | 1+13.8iT−83T2 |
| 89 | 1−16.3iT−89T2 |
| 97 | 1−3.49iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.748372428809376608553196281086, −7.52179646826858107519626421709, −6.73931239460548748811003289830, −6.00226626383631920555276870832, −5.53172189756125725685552399407, −4.92069329107167799446601777192, −3.83265569395249578921401568858, −2.56146279338854123807723425064, −2.38810527591405728927607158963, −0.999449108982013741474382311164,
1.34735217620769386657166357511, 2.23684433528930805076978449124, 2.80090699225777594259582167303, 4.17031182477969605919234704234, 4.78028843035538509701699832277, 5.68735335008663519297338347640, 6.22236527935716039081426813062, 6.70035024860627580125654607706, 7.79604987114322653974324663138, 8.542158956703509139640255907035