L(s) = 1 | + 2-s + 4-s + 3.98·5-s + 0.391i·7-s + 8-s + 3.98·10-s + (−2.34 − 2.34i)11-s + 0.870·13-s + 0.391i·14-s + 16-s − 5.35i·17-s + (−4.11 + 1.45i)19-s + 3.98·20-s + (−2.34 − 2.34i)22-s − 2.08·23-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s + 1.78·5-s + 0.148i·7-s + 0.353·8-s + 1.26·10-s + (−0.706 − 0.707i)11-s + 0.241·13-s + 0.104i·14-s + 0.250·16-s − 1.29i·17-s + (−0.942 + 0.332i)19-s + 0.890·20-s + (−0.499 − 0.500i)22-s − 0.435·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3762 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.902 + 0.431i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3762 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.902 + 0.431i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.221886528\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.221886528\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (2.34 + 2.34i)T \) |
| 19 | \( 1 + (4.11 - 1.45i)T \) |
good | 5 | \( 1 - 3.98T + 5T^{2} \) |
| 7 | \( 1 - 0.391iT - 7T^{2} \) |
| 13 | \( 1 - 0.870T + 13T^{2} \) |
| 17 | \( 1 + 5.35iT - 17T^{2} \) |
| 23 | \( 1 + 2.08T + 23T^{2} \) |
| 29 | \( 1 - 8.28T + 29T^{2} \) |
| 31 | \( 1 - 5.16iT - 31T^{2} \) |
| 37 | \( 1 + 7.83iT - 37T^{2} \) |
| 41 | \( 1 - 3.44T + 41T^{2} \) |
| 43 | \( 1 + 11.5iT - 43T^{2} \) |
| 47 | \( 1 - 12.6T + 47T^{2} \) |
| 53 | \( 1 + 1.51iT - 53T^{2} \) |
| 59 | \( 1 - 11.2iT - 59T^{2} \) |
| 61 | \( 1 + 0.200iT - 61T^{2} \) |
| 67 | \( 1 + 10.3iT - 67T^{2} \) |
| 71 | \( 1 - 11.8iT - 71T^{2} \) |
| 73 | \( 1 - 4.05iT - 73T^{2} \) |
| 79 | \( 1 + 1.63T + 79T^{2} \) |
| 83 | \( 1 + 13.8iT - 83T^{2} \) |
| 89 | \( 1 - 16.3iT - 89T^{2} \) |
| 97 | \( 1 - 3.49iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.748372428809376608553196281086, −7.52179646826858107519626421709, −6.73931239460548748811003289830, −6.00226626383631920555276870832, −5.53172189756125725685552399407, −4.92069329107167799446601777192, −3.83265569395249578921401568858, −2.56146279338854123807723425064, −2.38810527591405728927607158963, −0.999449108982013741474382311164,
1.34735217620769386657166357511, 2.23684433528930805076978449124, 2.80090699225777594259582167303, 4.17031182477969605919234704234, 4.78028843035538509701699832277, 5.68735335008663519297338347640, 6.22236527935716039081426813062, 6.70035024860627580125654607706, 7.79604987114322653974324663138, 8.542158956703509139640255907035