Properties

Label 3762.2.g.l
Level 37623762
Weight 22
Character orbit 3762.g
Analytic conductor 30.04030.040
Analytic rank 00
Dimension 2020
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3762,2,Mod(2089,3762)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3762, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3762.2089");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3762=2321119 3762 = 2 \cdot 3^{2} \cdot 11 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3762.g (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 30.039721240430.0397212404
Analytic rank: 00
Dimension: 2020
Coefficient field: Q[x]/(x20)\mathbb{Q}[x]/(x^{20} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x202x19+2x18+199x16414x15+430x14+184x13+6939x12++64 x^{20} - 2 x^{19} + 2 x^{18} + 199 x^{16} - 414 x^{15} + 430 x^{14} + 184 x^{13} + 6939 x^{12} + \cdots + 64 Copy content Toggle raw display
Coefficient ring: Z[a1,,a19]\Z[a_1, \ldots, a_{19}]
Coefficient ring index: 218 2^{18}
Twist minimal: no (minimal twist has level 1254)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β191,\beta_1,\ldots,\beta_{19} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+q2+q4β5q5β4q7+q8β5q10+β8q11+β10q13β4q14+q16+β18q17β17q19β5q20++(β173β10++β1)q98+O(q100) q + q^{2} + q^{4} - \beta_{5} q^{5} - \beta_{4} q^{7} + q^{8} - \beta_{5} q^{10} + \beta_{8} q^{11} + \beta_{10} q^{13} - \beta_{4} q^{14} + q^{16} + \beta_{18} q^{17} - \beta_{17} q^{19} - \beta_{5} q^{20}+ \cdots + (\beta_{17} - 3 \beta_{10} + \cdots + \beta_1) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 20q+20q2+20q44q5+20q84q106q11+4q13+20q16+2q194q206q22+8q23+32q25+4q264q29+20q32+2q384q40+36q98+O(q100) 20 q + 20 q^{2} + 20 q^{4} - 4 q^{5} + 20 q^{8} - 4 q^{10} - 6 q^{11} + 4 q^{13} + 20 q^{16} + 2 q^{19} - 4 q^{20} - 6 q^{22} + 8 q^{23} + 32 q^{25} + 4 q^{26} - 4 q^{29} + 20 q^{32} + 2 q^{38} - 4 q^{40}+ \cdots - 36 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x202x19+2x18+199x16414x15+430x14+184x13+6939x12++64 x^{20} - 2 x^{19} + 2 x^{18} + 199 x^{16} - 414 x^{15} + 430 x^{14} + 184 x^{13} + 6939 x^{12} + \cdots + 64 : Copy content Toggle raw display

β1\beta_{1}== (83 ⁣ ⁣97ν19+85 ⁣ ⁣48)/25 ⁣ ⁣32 ( 83\!\cdots\!97 \nu^{19} + \cdots - 85\!\cdots\!48 ) / 25\!\cdots\!32 Copy content Toggle raw display
β2\beta_{2}== (58 ⁣ ⁣68ν19+31 ⁣ ⁣40)/16 ⁣ ⁣52 ( 58\!\cdots\!68 \nu^{19} + \cdots - 31\!\cdots\!40 ) / 16\!\cdots\!52 Copy content Toggle raw display
β3\beta_{3}== (12 ⁣ ⁣51ν19+48 ⁣ ⁣44)/12 ⁣ ⁣16 ( 12\!\cdots\!51 \nu^{19} + \cdots - 48\!\cdots\!44 ) / 12\!\cdots\!16 Copy content Toggle raw display
β4\beta_{4}== (82 ⁣ ⁣31ν19++10 ⁣ ⁣68)/85 ⁣ ⁣44 ( 82\!\cdots\!31 \nu^{19} + \cdots + 10\!\cdots\!68 ) / 85\!\cdots\!44 Copy content Toggle raw display
β5\beta_{5}== (73 ⁣ ⁣17ν19+63 ⁣ ⁣24)/25 ⁣ ⁣32 ( 73\!\cdots\!17 \nu^{19} + \cdots - 63\!\cdots\!24 ) / 25\!\cdots\!32 Copy content Toggle raw display
β6\beta_{6}== (21 ⁣ ⁣05ν19+18 ⁣ ⁣28)/64 ⁣ ⁣08 ( 21\!\cdots\!05 \nu^{19} + \cdots - 18\!\cdots\!28 ) / 64\!\cdots\!08 Copy content Toggle raw display
β7\beta_{7}== (53 ⁣ ⁣05ν19++63 ⁣ ⁣92)/12 ⁣ ⁣16 ( 53\!\cdots\!05 \nu^{19} + \cdots + 63\!\cdots\!92 ) / 12\!\cdots\!16 Copy content Toggle raw display
β8\beta_{8}== (10 ⁣ ⁣23ν19+86 ⁣ ⁣56)/25 ⁣ ⁣32 ( - 10\!\cdots\!23 \nu^{19} + \cdots - 86\!\cdots\!56 ) / 25\!\cdots\!32 Copy content Toggle raw display
β9\beta_{9}== (15 ⁣ ⁣15ν19++49 ⁣ ⁣08)/25 ⁣ ⁣32 ( 15\!\cdots\!15 \nu^{19} + \cdots + 49\!\cdots\!08 ) / 25\!\cdots\!32 Copy content Toggle raw display
β10\beta_{10}== (97 ⁣ ⁣25ν19+38 ⁣ ⁣04)/12 ⁣ ⁣16 ( - 97\!\cdots\!25 \nu^{19} + \cdots - 38\!\cdots\!04 ) / 12\!\cdots\!16 Copy content Toggle raw display
β11\beta_{11}== (51 ⁣ ⁣33ν19++19 ⁣ ⁣40)/64 ⁣ ⁣08 ( 51\!\cdots\!33 \nu^{19} + \cdots + 19\!\cdots\!40 ) / 64\!\cdots\!08 Copy content Toggle raw display
β12\beta_{12}== (29 ⁣ ⁣71ν19++17 ⁣ ⁣96)/25 ⁣ ⁣32 ( - 29\!\cdots\!71 \nu^{19} + \cdots + 17\!\cdots\!96 ) / 25\!\cdots\!32 Copy content Toggle raw display
β13\beta_{13}== (16 ⁣ ⁣83ν19++13 ⁣ ⁣32)/12 ⁣ ⁣16 ( 16\!\cdots\!83 \nu^{19} + \cdots + 13\!\cdots\!32 ) / 12\!\cdots\!16 Copy content Toggle raw display
β14\beta_{14}== (40 ⁣ ⁣97ν19+54 ⁣ ⁣72)/25 ⁣ ⁣32 ( - 40\!\cdots\!97 \nu^{19} + \cdots - 54\!\cdots\!72 ) / 25\!\cdots\!32 Copy content Toggle raw display
β15\beta_{15}== (12 ⁣ ⁣39ν19++25 ⁣ ⁣04)/64 ⁣ ⁣08 ( - 12\!\cdots\!39 \nu^{19} + \cdots + 25\!\cdots\!04 ) / 64\!\cdots\!08 Copy content Toggle raw display
β16\beta_{16}== (25 ⁣ ⁣11ν19+18 ⁣ ⁣08)/12 ⁣ ⁣16 ( - 25\!\cdots\!11 \nu^{19} + \cdots - 18\!\cdots\!08 ) / 12\!\cdots\!16 Copy content Toggle raw display
β17\beta_{17}== (27 ⁣ ⁣13ν19+26 ⁣ ⁣16)/12 ⁣ ⁣16 ( - 27\!\cdots\!13 \nu^{19} + \cdots - 26\!\cdots\!16 ) / 12\!\cdots\!16 Copy content Toggle raw display
β18\beta_{18}== (61 ⁣ ⁣99ν19++65 ⁣ ⁣76)/25 ⁣ ⁣32 ( 61\!\cdots\!99 \nu^{19} + \cdots + 65\!\cdots\!76 ) / 25\!\cdots\!32 Copy content Toggle raw display
β19\beta_{19}== (31 ⁣ ⁣67ν19++85 ⁣ ⁣04)/12 ⁣ ⁣16 ( 31\!\cdots\!67 \nu^{19} + \cdots + 85\!\cdots\!04 ) / 12\!\cdots\!16 Copy content Toggle raw display
ν\nu== (β12+β9+β6+2β4)/4 ( \beta_{12} + \beta_{9} + \beta_{6} + 2\beta_{4} ) / 4 Copy content Toggle raw display
ν2\nu^{2}== (2β172β16+2β133β11+2β42β3+5β2)/4 ( 2\beta_{17} - 2\beta_{16} + 2\beta_{13} - 3\beta_{11} + 2\beta_{4} - 2\beta_{3} + 5\beta_{2} ) / 4 Copy content Toggle raw display
ν3\nu^{3}== (4β162β152β147β12+4β11+2β1011β9++4)/4 ( 4 \beta_{16} - 2 \beta_{15} - 2 \beta_{14} - 7 \beta_{12} + 4 \beta_{11} + 2 \beta_{10} - 11 \beta_{9} + \cdots + 4 ) / 4 Copy content Toggle raw display
ν4\nu^{4}== (4β19+13β176β15+4β1242β102β9+11β8+58)/2 ( - 4 \beta_{19} + 13 \beta_{17} - 6 \beta_{15} + 4 \beta_{12} - 42 \beta_{10} - 2 \beta_{9} + 11 \beta_{8} + \cdots - 58 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (14β1914β1856β1624β15+24β14+10β13++72)/4 ( 14 \beta_{19} - 14 \beta_{18} - 56 \beta_{16} - 24 \beta_{15} + 24 \beta_{14} + 10 \beta_{13} + \cdots + 72 ) / 4 Copy content Toggle raw display
ν6\nu^{6}== (142β18326β17+70β16+210β14362β13+90β12+124β1)/4 ( 142 \beta_{18} - 326 \beta_{17} + 70 \beta_{16} + 210 \beta_{14} - 362 \beta_{13} + 90 \beta_{12} + \cdots - 124 \beta_1 ) / 4 Copy content Toggle raw display
ν7\nu^{7}== (282β19282β18380β17690β16+254β15+254β14+990)/4 ( - 282 \beta_{19} - 282 \beta_{18} - 380 \beta_{17} - 690 \beta_{16} + 254 \beta_{15} + 254 \beta_{14} + \cdots - 990 ) / 4 Copy content Toggle raw display
ν8\nu^{8}== (1019β192015β17+1463β151034β12+6744β10+429β9++6749)/2 ( 1019 \beta_{19} - 2015 \beta_{17} + 1463 \beta_{15} - 1034 \beta_{12} + 6744 \beta_{10} + 429 \beta_{9} + \cdots + 6749 ) / 2 Copy content Toggle raw display
ν9\nu^{9}== (4276β19+4276β18+8338β16+2680β152680β14+12894)/4 ( - 4276 \beta_{19} + 4276 \beta_{18} + 8338 \beta_{16} + 2680 \beta_{15} - 2680 \beta_{14} + \cdots - 12894 ) / 4 Copy content Toggle raw display
ν10\nu^{10}== (27256β18+49494β173858β1637968β14+57242β13++23700β1)/4 ( - 27256 \beta_{18} + 49494 \beta_{17} - 3858 \beta_{16} - 37968 \beta_{14} + 57242 \beta_{13} + \cdots + 23700 \beta_1 ) / 4 Copy content Toggle raw display
ν11\nu^{11}== (58720β19+58720β18+67752β17+101036β1628742β15++165956)/4 ( 58720 \beta_{19} + 58720 \beta_{18} + 67752 \beta_{17} + 101036 \beta_{16} - 28742 \beta_{15} + \cdots + 165956 ) / 4 Copy content Toggle raw display
ν12\nu^{12}== (176628β19+303173β17239246β15+182010β121042960β10+965092)/2 ( - 176628 \beta_{19} + 303173 \beta_{17} - 239246 \beta_{15} + 182010 \beta_{12} - 1042960 \beta_{10} + \cdots - 965092 ) / 2 Copy content Toggle raw display
ν13\nu^{13}== (772178β19772178β181231612β16312660β15+312660β14++2131180)/4 ( 772178 \beta_{19} - 772178 \beta_{18} - 1231612 \beta_{16} - 312660 \beta_{15} + 312660 \beta_{14} + \cdots + 2131180 ) / 4 Copy content Toggle raw display
ν14\nu^{14}== (4507906β187423230β17+534738β16+5949350β148887110β13+3547448β1)/4 ( 4507906 \beta_{18} - 7423230 \beta_{17} + 534738 \beta_{16} + 5949350 \beta_{14} - 8887110 \beta_{13} + \cdots - 3547448 \beta_1 ) / 4 Copy content Toggle raw display
ν15\nu^{15}== (9945318β199945318β189567468β1715085666β16+3427262β15+27359034)/4 ( - 9945318 \beta_{19} - 9945318 \beta_{18} - 9567468 \beta_{17} - 15085666 \beta_{16} + 3427262 \beta_{15} + \cdots - 27359034 ) / 4 Copy content Toggle raw display
ν16\nu^{16}== (28533035β1945442251β17+36744031β1530333120β12+159902054β10++146079151)/2 ( 28533035 \beta_{19} - 45442251 \beta_{17} + 36744031 \beta_{15} - 30333120 \beta_{12} + 159902054 \beta_{10} + \cdots + 146079151 ) / 2 Copy content Toggle raw display
ν17\nu^{17}== (126759560β19+126759560β18+185384902β16+37613004β15+351132370)/4 ( - 126759560 \beta_{19} + 126759560 \beta_{18} + 185384902 \beta_{16} + 37613004 \beta_{15} + \cdots - 351132370 ) / 4 Copy content Toggle raw display
ν18\nu^{18}== (719370636β18+1113095910β17106969886β16904845476β14++500642640β1)/4 ( - 719370636 \beta_{18} + 1113095910 \beta_{17} - 106969886 \beta_{16} - 904845476 \beta_{14} + \cdots + 500642640 \beta_1 ) / 4 Copy content Toggle raw display
ν19\nu^{19}== (1606937508β19+1606937508β18+1254307784β17+2282997988β16++4504244008)/4 ( 1606937508 \beta_{19} + 1606937508 \beta_{18} + 1254307784 \beta_{17} + 2282997988 \beta_{16} + \cdots + 4504244008 ) / 4 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3762Z)×\left(\mathbb{Z}/3762\mathbb{Z}\right)^\times.

nn 343343 23772377 29272927
χ(n)\chi(n) 1-1 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
2089.1
−1.82753 + 1.82753i
−1.82753 1.82753i
−0.407475 + 0.407475i
−0.407475 0.407475i
2.45556 + 2.45556i
2.45556 2.45556i
1.75638 + 1.75638i
1.75638 1.75638i
−0.684824 + 0.684824i
−0.684824 0.684824i
−2.50724 + 2.50724i
−2.50724 2.50724i
−0.196118 + 0.196118i
−0.196118 0.196118i
1.32386 + 1.32386i
1.32386 1.32386i
0.891508 + 0.891508i
0.891508 0.891508i
0.195859 + 0.195859i
0.195859 0.195859i
1.00000 0 1.00000 −4.00532 0 3.65505i 1.00000 0 −4.00532
2089.2 1.00000 0 1.00000 −4.00532 0 3.65505i 1.00000 0 −4.00532
2089.3 1.00000 0 1.00000 −3.77178 0 0.814950i 1.00000 0 −3.77178
2089.4 1.00000 0 1.00000 −3.77178 0 0.814950i 1.00000 0 −3.77178
2089.5 1.00000 0 1.00000 −2.33584 0 4.91113i 1.00000 0 −2.33584
2089.6 1.00000 0 1.00000 −2.33584 0 4.91113i 1.00000 0 −2.33584
2089.7 1.00000 0 1.00000 −1.24031 0 3.51276i 1.00000 0 −1.24031
2089.8 1.00000 0 1.00000 −1.24031 0 3.51276i 1.00000 0 −1.24031
2089.9 1.00000 0 1.00000 −0.845289 0 1.36965i 1.00000 0 −0.845289
2089.10 1.00000 0 1.00000 −0.845289 0 1.36965i 1.00000 0 −0.845289
2089.11 1.00000 0 1.00000 0.397906 0 5.01447i 1.00000 0 0.397906
2089.12 1.00000 0 1.00000 0.397906 0 5.01447i 1.00000 0 0.397906
2089.13 1.00000 0 1.00000 1.28096 0 0.392237i 1.00000 0 1.28096
2089.14 1.00000 0 1.00000 1.28096 0 0.392237i 1.00000 0 1.28096
2089.15 1.00000 0 1.00000 2.09100 0 2.64773i 1.00000 0 2.09100
2089.16 1.00000 0 1.00000 2.09100 0 2.64773i 1.00000 0 2.09100
2089.17 1.00000 0 1.00000 2.44406 0 1.78302i 1.00000 0 2.44406
2089.18 1.00000 0 1.00000 2.44406 0 1.78302i 1.00000 0 2.44406
2089.19 1.00000 0 1.00000 3.98461 0 0.391718i 1.00000 0 3.98461
2089.20 1.00000 0 1.00000 3.98461 0 0.391718i 1.00000 0 3.98461
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2089.20
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
209.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3762.2.g.l 20
3.b odd 2 1 1254.2.g.a 20
11.b odd 2 1 3762.2.g.k 20
19.b odd 2 1 3762.2.g.k 20
33.d even 2 1 1254.2.g.b yes 20
57.d even 2 1 1254.2.g.b yes 20
209.d even 2 1 inner 3762.2.g.l 20
627.b odd 2 1 1254.2.g.a 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1254.2.g.a 20 3.b odd 2 1
1254.2.g.a 20 627.b odd 2 1
1254.2.g.b yes 20 33.d even 2 1
1254.2.g.b yes 20 57.d even 2 1
3762.2.g.k 20 11.b odd 2 1
3762.2.g.k 20 19.b odd 2 1
3762.2.g.l 20 1.a even 1 1 trivial
3762.2.g.l 20 209.d even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(3762,[χ])S_{2}^{\mathrm{new}}(3762, [\chi]):

T510+2T5931T5850T57+308T56+336T551168T54+384 T_{5}^{10} + 2 T_{5}^{9} - 31 T_{5}^{8} - 50 T_{5}^{7} + 308 T_{5}^{6} + 336 T_{5}^{5} - 1168 T_{5}^{4} + \cdots - 384 Copy content Toggle raw display
T13102T13948T138+40T137+768T136+64T135+4608 T_{13}^{10} - 2 T_{13}^{9} - 48 T_{13}^{8} + 40 T_{13}^{7} + 768 T_{13}^{6} + 64 T_{13}^{5} + \cdots - 4608 Copy content Toggle raw display
T23104T239148T238+704T237+6960T23641056T235++4633088 T_{23}^{10} - 4 T_{23}^{9} - 148 T_{23}^{8} + 704 T_{23}^{7} + 6960 T_{23}^{6} - 41056 T_{23}^{5} + \cdots + 4633088 Copy content Toggle raw display
T2910+2T299207T298540T297+14824T296+49360T295++24032000 T_{29}^{10} + 2 T_{29}^{9} - 207 T_{29}^{8} - 540 T_{29}^{7} + 14824 T_{29}^{6} + 49360 T_{29}^{5} + \cdots + 24032000 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T1)20 (T - 1)^{20} Copy content Toggle raw display
33 T20 T^{20} Copy content Toggle raw display
55 (T10+2T9+384)2 (T^{10} + 2 T^{9} + \cdots - 384)^{2} Copy content Toggle raw display
77 T20+88T18++65536 T^{20} + 88 T^{18} + \cdots + 65536 Copy content Toggle raw display
1111 T20++25937424601 T^{20} + \cdots + 25937424601 Copy content Toggle raw display
1313 (T102T9+4608)2 (T^{10} - 2 T^{9} + \cdots - 4608)^{2} Copy content Toggle raw display
1717 T20++59395538944 T^{20} + \cdots + 59395538944 Copy content Toggle raw display
1919 T20++6131066257801 T^{20} + \cdots + 6131066257801 Copy content Toggle raw display
2323 (T104T9++4633088)2 (T^{10} - 4 T^{9} + \cdots + 4633088)^{2} Copy content Toggle raw display
2929 (T10+2T9++24032000)2 (T^{10} + 2 T^{9} + \cdots + 24032000)^{2} Copy content Toggle raw display
3131 T20+224T18++80281600 T^{20} + 224 T^{18} + \cdots + 80281600 Copy content Toggle raw display
3737 T20+258T18++1024 T^{20} + 258 T^{18} + \cdots + 1024 Copy content Toggle raw display
4141 (T1012T9++32157696)2 (T^{10} - 12 T^{9} + \cdots + 32157696)^{2} Copy content Toggle raw display
4343 T20+314T18++51380224 T^{20} + 314 T^{18} + \cdots + 51380224 Copy content Toggle raw display
4747 (T10+4T9++594432)2 (T^{10} + 4 T^{9} + \cdots + 594432)^{2} Copy content Toggle raw display
5353 T20++14880096256 T^{20} + \cdots + 14880096256 Copy content Toggle raw display
5959 T20++2415919104 T^{20} + \cdots + 2415919104 Copy content Toggle raw display
6161 T20++3226240000 T^{20} + \cdots + 3226240000 Copy content Toggle raw display
6767 T20++31021072384 T^{20} + \cdots + 31021072384 Copy content Toggle raw display
7171 T20++10 ⁣ ⁣00 T^{20} + \cdots + 10\!\cdots\!00 Copy content Toggle raw display
7373 T20++2578054119424 T^{20} + \cdots + 2578054119424 Copy content Toggle raw display
7979 (T1012T9+70604800)2 (T^{10} - 12 T^{9} + \cdots - 70604800)^{2} Copy content Toggle raw display
8383 T20++48 ⁣ ⁣44 T^{20} + \cdots + 48\!\cdots\!44 Copy content Toggle raw display
8989 T20++31 ⁣ ⁣56 T^{20} + \cdots + 31\!\cdots\!56 Copy content Toggle raw display
9797 T20++43 ⁣ ⁣76 T^{20} + \cdots + 43\!\cdots\!76 Copy content Toggle raw display
show more
show less