Properties

Label 3762.2.g.l
Level $3762$
Weight $2$
Character orbit 3762.g
Analytic conductor $30.040$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3762,2,Mod(2089,3762)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3762, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3762.2089");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3762 = 2 \cdot 3^{2} \cdot 11 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3762.g (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.0397212404\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 2 x^{18} + 199 x^{16} - 414 x^{15} + 430 x^{14} + 184 x^{13} + 6939 x^{12} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{18} \)
Twist minimal: no (minimal twist has level 1254)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + q^{4} - \beta_{5} q^{5} - \beta_{4} q^{7} + q^{8} - \beta_{5} q^{10} + \beta_{8} q^{11} + \beta_{10} q^{13} - \beta_{4} q^{14} + q^{16} + \beta_{18} q^{17} - \beta_{17} q^{19} - \beta_{5} q^{20}+ \cdots + (\beta_{17} - 3 \beta_{10} + \cdots + \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 20 q^{2} + 20 q^{4} - 4 q^{5} + 20 q^{8} - 4 q^{10} - 6 q^{11} + 4 q^{13} + 20 q^{16} + 2 q^{19} - 4 q^{20} - 6 q^{22} + 8 q^{23} + 32 q^{25} + 4 q^{26} - 4 q^{29} + 20 q^{32} + 2 q^{38} - 4 q^{40}+ \cdots - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} - 2 x^{19} + 2 x^{18} + 199 x^{16} - 414 x^{15} + 430 x^{14} + 184 x^{13} + 6939 x^{12} + \cdots + 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 83\!\cdots\!97 \nu^{19} + \cdots - 85\!\cdots\!48 ) / 25\!\cdots\!32 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 58\!\cdots\!68 \nu^{19} + \cdots - 31\!\cdots\!40 ) / 16\!\cdots\!52 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 12\!\cdots\!51 \nu^{19} + \cdots - 48\!\cdots\!44 ) / 12\!\cdots\!16 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 82\!\cdots\!31 \nu^{19} + \cdots + 10\!\cdots\!68 ) / 85\!\cdots\!44 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 73\!\cdots\!17 \nu^{19} + \cdots - 63\!\cdots\!24 ) / 25\!\cdots\!32 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 21\!\cdots\!05 \nu^{19} + \cdots - 18\!\cdots\!28 ) / 64\!\cdots\!08 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 53\!\cdots\!05 \nu^{19} + \cdots + 63\!\cdots\!92 ) / 12\!\cdots\!16 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 10\!\cdots\!23 \nu^{19} + \cdots - 86\!\cdots\!56 ) / 25\!\cdots\!32 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 15\!\cdots\!15 \nu^{19} + \cdots + 49\!\cdots\!08 ) / 25\!\cdots\!32 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 97\!\cdots\!25 \nu^{19} + \cdots - 38\!\cdots\!04 ) / 12\!\cdots\!16 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 51\!\cdots\!33 \nu^{19} + \cdots + 19\!\cdots\!40 ) / 64\!\cdots\!08 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( - 29\!\cdots\!71 \nu^{19} + \cdots + 17\!\cdots\!96 ) / 25\!\cdots\!32 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 16\!\cdots\!83 \nu^{19} + \cdots + 13\!\cdots\!32 ) / 12\!\cdots\!16 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 40\!\cdots\!97 \nu^{19} + \cdots - 54\!\cdots\!72 ) / 25\!\cdots\!32 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 12\!\cdots\!39 \nu^{19} + \cdots + 25\!\cdots\!04 ) / 64\!\cdots\!08 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( - 25\!\cdots\!11 \nu^{19} + \cdots - 18\!\cdots\!08 ) / 12\!\cdots\!16 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( - 27\!\cdots\!13 \nu^{19} + \cdots - 26\!\cdots\!16 ) / 12\!\cdots\!16 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( 61\!\cdots\!99 \nu^{19} + \cdots + 65\!\cdots\!76 ) / 25\!\cdots\!32 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( 31\!\cdots\!67 \nu^{19} + \cdots + 85\!\cdots\!04 ) / 12\!\cdots\!16 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{12} + \beta_{9} + \beta_{6} + 2\beta_{4} ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2\beta_{17} - 2\beta_{16} + 2\beta_{13} - 3\beta_{11} + 2\beta_{4} - 2\beta_{3} + 5\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 4 \beta_{16} - 2 \beta_{15} - 2 \beta_{14} - 7 \beta_{12} + 4 \beta_{11} + 2 \beta_{10} - 11 \beta_{9} + \cdots + 4 ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( - 4 \beta_{19} + 13 \beta_{17} - 6 \beta_{15} + 4 \beta_{12} - 42 \beta_{10} - 2 \beta_{9} + 11 \beta_{8} + \cdots - 58 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 14 \beta_{19} - 14 \beta_{18} - 56 \beta_{16} - 24 \beta_{15} + 24 \beta_{14} + 10 \beta_{13} + \cdots + 72 ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 142 \beta_{18} - 326 \beta_{17} + 70 \beta_{16} + 210 \beta_{14} - 362 \beta_{13} + 90 \beta_{12} + \cdots - 124 \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 282 \beta_{19} - 282 \beta_{18} - 380 \beta_{17} - 690 \beta_{16} + 254 \beta_{15} + 254 \beta_{14} + \cdots - 990 ) / 4 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 1019 \beta_{19} - 2015 \beta_{17} + 1463 \beta_{15} - 1034 \beta_{12} + 6744 \beta_{10} + 429 \beta_{9} + \cdots + 6749 ) / 2 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 4276 \beta_{19} + 4276 \beta_{18} + 8338 \beta_{16} + 2680 \beta_{15} - 2680 \beta_{14} + \cdots - 12894 ) / 4 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( - 27256 \beta_{18} + 49494 \beta_{17} - 3858 \beta_{16} - 37968 \beta_{14} + 57242 \beta_{13} + \cdots + 23700 \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 58720 \beta_{19} + 58720 \beta_{18} + 67752 \beta_{17} + 101036 \beta_{16} - 28742 \beta_{15} + \cdots + 165956 ) / 4 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( - 176628 \beta_{19} + 303173 \beta_{17} - 239246 \beta_{15} + 182010 \beta_{12} - 1042960 \beta_{10} + \cdots - 965092 ) / 2 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( 772178 \beta_{19} - 772178 \beta_{18} - 1231612 \beta_{16} - 312660 \beta_{15} + 312660 \beta_{14} + \cdots + 2131180 ) / 4 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( 4507906 \beta_{18} - 7423230 \beta_{17} + 534738 \beta_{16} + 5949350 \beta_{14} - 8887110 \beta_{13} + \cdots - 3547448 \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( - 9945318 \beta_{19} - 9945318 \beta_{18} - 9567468 \beta_{17} - 15085666 \beta_{16} + 3427262 \beta_{15} + \cdots - 27359034 ) / 4 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( ( 28533035 \beta_{19} - 45442251 \beta_{17} + 36744031 \beta_{15} - 30333120 \beta_{12} + 159902054 \beta_{10} + \cdots + 146079151 ) / 2 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( ( - 126759560 \beta_{19} + 126759560 \beta_{18} + 185384902 \beta_{16} + 37613004 \beta_{15} + \cdots - 351132370 ) / 4 \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( ( - 719370636 \beta_{18} + 1113095910 \beta_{17} - 106969886 \beta_{16} - 904845476 \beta_{14} + \cdots + 500642640 \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( ( 1606937508 \beta_{19} + 1606937508 \beta_{18} + 1254307784 \beta_{17} + 2282997988 \beta_{16} + \cdots + 4504244008 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3762\mathbb{Z}\right)^\times\).

\(n\) \(343\) \(2377\) \(2927\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2089.1
−1.82753 + 1.82753i
−1.82753 1.82753i
−0.407475 + 0.407475i
−0.407475 0.407475i
2.45556 + 2.45556i
2.45556 2.45556i
1.75638 + 1.75638i
1.75638 1.75638i
−0.684824 + 0.684824i
−0.684824 0.684824i
−2.50724 + 2.50724i
−2.50724 2.50724i
−0.196118 + 0.196118i
−0.196118 0.196118i
1.32386 + 1.32386i
1.32386 1.32386i
0.891508 + 0.891508i
0.891508 0.891508i
0.195859 + 0.195859i
0.195859 0.195859i
1.00000 0 1.00000 −4.00532 0 3.65505i 1.00000 0 −4.00532
2089.2 1.00000 0 1.00000 −4.00532 0 3.65505i 1.00000 0 −4.00532
2089.3 1.00000 0 1.00000 −3.77178 0 0.814950i 1.00000 0 −3.77178
2089.4 1.00000 0 1.00000 −3.77178 0 0.814950i 1.00000 0 −3.77178
2089.5 1.00000 0 1.00000 −2.33584 0 4.91113i 1.00000 0 −2.33584
2089.6 1.00000 0 1.00000 −2.33584 0 4.91113i 1.00000 0 −2.33584
2089.7 1.00000 0 1.00000 −1.24031 0 3.51276i 1.00000 0 −1.24031
2089.8 1.00000 0 1.00000 −1.24031 0 3.51276i 1.00000 0 −1.24031
2089.9 1.00000 0 1.00000 −0.845289 0 1.36965i 1.00000 0 −0.845289
2089.10 1.00000 0 1.00000 −0.845289 0 1.36965i 1.00000 0 −0.845289
2089.11 1.00000 0 1.00000 0.397906 0 5.01447i 1.00000 0 0.397906
2089.12 1.00000 0 1.00000 0.397906 0 5.01447i 1.00000 0 0.397906
2089.13 1.00000 0 1.00000 1.28096 0 0.392237i 1.00000 0 1.28096
2089.14 1.00000 0 1.00000 1.28096 0 0.392237i 1.00000 0 1.28096
2089.15 1.00000 0 1.00000 2.09100 0 2.64773i 1.00000 0 2.09100
2089.16 1.00000 0 1.00000 2.09100 0 2.64773i 1.00000 0 2.09100
2089.17 1.00000 0 1.00000 2.44406 0 1.78302i 1.00000 0 2.44406
2089.18 1.00000 0 1.00000 2.44406 0 1.78302i 1.00000 0 2.44406
2089.19 1.00000 0 1.00000 3.98461 0 0.391718i 1.00000 0 3.98461
2089.20 1.00000 0 1.00000 3.98461 0 0.391718i 1.00000 0 3.98461
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2089.20
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
209.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3762.2.g.l 20
3.b odd 2 1 1254.2.g.a 20
11.b odd 2 1 3762.2.g.k 20
19.b odd 2 1 3762.2.g.k 20
33.d even 2 1 1254.2.g.b yes 20
57.d even 2 1 1254.2.g.b yes 20
209.d even 2 1 inner 3762.2.g.l 20
627.b odd 2 1 1254.2.g.a 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1254.2.g.a 20 3.b odd 2 1
1254.2.g.a 20 627.b odd 2 1
1254.2.g.b yes 20 33.d even 2 1
1254.2.g.b yes 20 57.d even 2 1
3762.2.g.k 20 11.b odd 2 1
3762.2.g.k 20 19.b odd 2 1
3762.2.g.l 20 1.a even 1 1 trivial
3762.2.g.l 20 209.d even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3762, [\chi])\):

\( T_{5}^{10} + 2 T_{5}^{9} - 31 T_{5}^{8} - 50 T_{5}^{7} + 308 T_{5}^{6} + 336 T_{5}^{5} - 1168 T_{5}^{4} + \cdots - 384 \) Copy content Toggle raw display
\( T_{13}^{10} - 2 T_{13}^{9} - 48 T_{13}^{8} + 40 T_{13}^{7} + 768 T_{13}^{6} + 64 T_{13}^{5} + \cdots - 4608 \) Copy content Toggle raw display
\( T_{23}^{10} - 4 T_{23}^{9} - 148 T_{23}^{8} + 704 T_{23}^{7} + 6960 T_{23}^{6} - 41056 T_{23}^{5} + \cdots + 4633088 \) Copy content Toggle raw display
\( T_{29}^{10} + 2 T_{29}^{9} - 207 T_{29}^{8} - 540 T_{29}^{7} + 14824 T_{29}^{6} + 49360 T_{29}^{5} + \cdots + 24032000 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{20} \) Copy content Toggle raw display
$3$ \( T^{20} \) Copy content Toggle raw display
$5$ \( (T^{10} + 2 T^{9} + \cdots - 384)^{2} \) Copy content Toggle raw display
$7$ \( T^{20} + 88 T^{18} + \cdots + 65536 \) Copy content Toggle raw display
$11$ \( T^{20} + \cdots + 25937424601 \) Copy content Toggle raw display
$13$ \( (T^{10} - 2 T^{9} + \cdots - 4608)^{2} \) Copy content Toggle raw display
$17$ \( T^{20} + \cdots + 59395538944 \) Copy content Toggle raw display
$19$ \( T^{20} + \cdots + 6131066257801 \) Copy content Toggle raw display
$23$ \( (T^{10} - 4 T^{9} + \cdots + 4633088)^{2} \) Copy content Toggle raw display
$29$ \( (T^{10} + 2 T^{9} + \cdots + 24032000)^{2} \) Copy content Toggle raw display
$31$ \( T^{20} + 224 T^{18} + \cdots + 80281600 \) Copy content Toggle raw display
$37$ \( T^{20} + 258 T^{18} + \cdots + 1024 \) Copy content Toggle raw display
$41$ \( (T^{10} - 12 T^{9} + \cdots + 32157696)^{2} \) Copy content Toggle raw display
$43$ \( T^{20} + 314 T^{18} + \cdots + 51380224 \) Copy content Toggle raw display
$47$ \( (T^{10} + 4 T^{9} + \cdots + 594432)^{2} \) Copy content Toggle raw display
$53$ \( T^{20} + \cdots + 14880096256 \) Copy content Toggle raw display
$59$ \( T^{20} + \cdots + 2415919104 \) Copy content Toggle raw display
$61$ \( T^{20} + \cdots + 3226240000 \) Copy content Toggle raw display
$67$ \( T^{20} + \cdots + 31021072384 \) Copy content Toggle raw display
$71$ \( T^{20} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{20} + \cdots + 2578054119424 \) Copy content Toggle raw display
$79$ \( (T^{10} - 12 T^{9} + \cdots - 70604800)^{2} \) Copy content Toggle raw display
$83$ \( T^{20} + \cdots + 48\!\cdots\!44 \) Copy content Toggle raw display
$89$ \( T^{20} + \cdots + 31\!\cdots\!56 \) Copy content Toggle raw display
$97$ \( T^{20} + \cdots + 43\!\cdots\!76 \) Copy content Toggle raw display
show more
show less