L(s) = 1 | + 2-s + 4-s − 3.77·5-s + 0.814i·7-s + 8-s − 3.77·10-s + (2.67 − 1.95i)11-s + 2.43·13-s + 0.814i·14-s + 16-s − 3.57i·17-s + (−1.78 + 3.97i)19-s − 3.77·20-s + (2.67 − 1.95i)22-s − 6.28·23-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.5·4-s − 1.68·5-s + 0.308i·7-s + 0.353·8-s − 1.19·10-s + (0.806 − 0.590i)11-s + 0.676·13-s + 0.217i·14-s + 0.250·16-s − 0.867i·17-s + (−0.408 + 0.912i)19-s − 0.843·20-s + (0.570 − 0.417i)22-s − 1.31·23-s + ⋯ |
Λ(s)=(=(3762s/2ΓC(s)L(s)(0.209+0.977i)Λ(2−s)
Λ(s)=(=(3762s/2ΓC(s+1/2)L(s)(0.209+0.977i)Λ(1−s)
Degree: |
2 |
Conductor: |
3762
= 2⋅32⋅11⋅19
|
Sign: |
0.209+0.977i
|
Analytic conductor: |
30.0397 |
Root analytic conductor: |
5.48085 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3762(2089,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3762, ( :1/2), 0.209+0.977i)
|
Particular Values
L(1) |
≈ |
1.652480663 |
L(21) |
≈ |
1.652480663 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 11 | 1+(−2.67+1.95i)T |
| 19 | 1+(1.78−3.97i)T |
good | 5 | 1+3.77T+5T2 |
| 7 | 1−0.814iT−7T2 |
| 13 | 1−2.43T+13T2 |
| 17 | 1+3.57iT−17T2 |
| 23 | 1+6.28T+23T2 |
| 29 | 1+6.64T+29T2 |
| 31 | 1−2.09iT−31T2 |
| 37 | 1−1.67iT−37T2 |
| 41 | 1−6.59T+41T2 |
| 43 | 1+4.68iT−43T2 |
| 47 | 1−4.49T+47T2 |
| 53 | 1+11.4iT−53T2 |
| 59 | 1+9.88iT−59T2 |
| 61 | 1+15.1iT−61T2 |
| 67 | 1+2.32iT−67T2 |
| 71 | 1−13.9iT−71T2 |
| 73 | 1+1.29iT−73T2 |
| 79 | 1+5.80T+79T2 |
| 83 | 1+7.69iT−83T2 |
| 89 | 1+5.58iT−89T2 |
| 97 | 1+2.59iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.240135120882820376334678708218, −7.61526132723776002076712638393, −6.85633853630423419097400182700, −6.07713809149534451773394822677, −5.32065389640354918578823904383, −4.21837413635892332014295015941, −3.81899006838387817317476979799, −3.19271196860033330199874447371, −1.87112309543056908968465796222, −0.43194598031274989968834818488,
1.09116383056809330029538527979, 2.40453957073597764262169129884, 3.59496129429621326143719504844, 4.17898331541468232412131889811, 4.37117956512073971668868287161, 5.75328254799127259825248396548, 6.40141667502436352285847830487, 7.45389267995886204388835683024, 7.53971705906820343099446389663, 8.590465845592430158701588009578