L(s) = 1 | + i·2-s − 4-s + 1.73·5-s + (−2.5 + 0.866i)7-s − i·8-s + 1.73i·10-s + 3i·11-s + 6.92i·13-s + (−0.866 − 2.5i)14-s + 16-s + 6.92·17-s + 3.46i·19-s − 1.73·20-s − 3·22-s − 6i·23-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + 0.774·5-s + (−0.944 + 0.327i)7-s − 0.353i·8-s + 0.547i·10-s + 0.904i·11-s + 1.92i·13-s + (−0.231 − 0.668i)14-s + 0.250·16-s + 1.68·17-s + 0.794i·19-s − 0.387·20-s − 0.639·22-s − 1.25i·23-s + ⋯ |
Λ(s)=(=(378s/2ΓC(s)L(s)(−0.327−0.944i)Λ(2−s)
Λ(s)=(=(378s/2ΓC(s+1/2)L(s)(−0.327−0.944i)Λ(1−s)
Degree: |
2 |
Conductor: |
378
= 2⋅33⋅7
|
Sign: |
−0.327−0.944i
|
Analytic conductor: |
3.01834 |
Root analytic conductor: |
1.73733 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ378(377,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 378, ( :1/2), −0.327−0.944i)
|
Particular Values
L(1) |
≈ |
0.733330+1.03011i |
L(21) |
≈ |
0.733330+1.03011i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−iT |
| 3 | 1 |
| 7 | 1+(2.5−0.866i)T |
good | 5 | 1−1.73T+5T2 |
| 11 | 1−3iT−11T2 |
| 13 | 1−6.92iT−13T2 |
| 17 | 1−6.92T+17T2 |
| 19 | 1−3.46iT−19T2 |
| 23 | 1+6iT−23T2 |
| 29 | 1−6iT−29T2 |
| 31 | 1+5.19iT−31T2 |
| 37 | 1+2T+37T2 |
| 41 | 1−3.46T+41T2 |
| 43 | 1+2T+43T2 |
| 47 | 1+3.46T+47T2 |
| 53 | 1+3iT−53T2 |
| 59 | 1−3.46T+59T2 |
| 61 | 1+6.92iT−61T2 |
| 67 | 1−2T+67T2 |
| 71 | 1+12iT−71T2 |
| 73 | 1+12.1iT−73T2 |
| 79 | 1−8T+79T2 |
| 83 | 1+1.73T+83T2 |
| 89 | 1−10.3T+89T2 |
| 97 | 1−12.1iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.95897178575845675128622839395, −10.33840165168140928444411217414, −9.624812580510742038863350211755, −9.090393223844280648885121274127, −7.77949847293907118173619831348, −6.70024093427145763703808662451, −6.10793565913202028806178696743, −4.96325070707529899734466334736, −3.68526917680665035907942788732, −1.97329068957981973631281959760,
0.899611126626033953425390149797, 2.86694919426937825445757505001, 3.55858479146466087117254049237, 5.42256276793357544650064973651, 5.91496784936962241399101036041, 7.44445268402087159160073099768, 8.439673463199116733588540497238, 9.710099163967345657983701077059, 10.03428170579697789839389304342, 10.94054348308868652549869382528