L(s) = 1 | + i·2-s − 4-s + 1.73·5-s + (−2.5 + 0.866i)7-s − i·8-s + 1.73i·10-s + 3i·11-s + 6.92i·13-s + (−0.866 − 2.5i)14-s + 16-s + 6.92·17-s + 3.46i·19-s − 1.73·20-s − 3·22-s − 6i·23-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 0.5·4-s + 0.774·5-s + (−0.944 + 0.327i)7-s − 0.353i·8-s + 0.547i·10-s + 0.904i·11-s + 1.92i·13-s + (−0.231 − 0.668i)14-s + 0.250·16-s + 1.68·17-s + 0.794i·19-s − 0.387·20-s − 0.639·22-s − 1.25i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.327 - 0.944i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.327 - 0.944i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.733330 + 1.03011i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.733330 + 1.03011i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2.5 - 0.866i)T \) |
good | 5 | \( 1 - 1.73T + 5T^{2} \) |
| 11 | \( 1 - 3iT - 11T^{2} \) |
| 13 | \( 1 - 6.92iT - 13T^{2} \) |
| 17 | \( 1 - 6.92T + 17T^{2} \) |
| 19 | \( 1 - 3.46iT - 19T^{2} \) |
| 23 | \( 1 + 6iT - 23T^{2} \) |
| 29 | \( 1 - 6iT - 29T^{2} \) |
| 31 | \( 1 + 5.19iT - 31T^{2} \) |
| 37 | \( 1 + 2T + 37T^{2} \) |
| 41 | \( 1 - 3.46T + 41T^{2} \) |
| 43 | \( 1 + 2T + 43T^{2} \) |
| 47 | \( 1 + 3.46T + 47T^{2} \) |
| 53 | \( 1 + 3iT - 53T^{2} \) |
| 59 | \( 1 - 3.46T + 59T^{2} \) |
| 61 | \( 1 + 6.92iT - 61T^{2} \) |
| 67 | \( 1 - 2T + 67T^{2} \) |
| 71 | \( 1 + 12iT - 71T^{2} \) |
| 73 | \( 1 + 12.1iT - 73T^{2} \) |
| 79 | \( 1 - 8T + 79T^{2} \) |
| 83 | \( 1 + 1.73T + 83T^{2} \) |
| 89 | \( 1 - 10.3T + 89T^{2} \) |
| 97 | \( 1 - 12.1iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.95897178575845675128622839395, −10.33840165168140928444411217414, −9.624812580510742038863350211755, −9.090393223844280648885121274127, −7.77949847293907118173619831348, −6.70024093427145763703808662451, −6.10793565913202028806178696743, −4.96325070707529899734466334736, −3.68526917680665035907942788732, −1.97329068957981973631281959760,
0.899611126626033953425390149797, 2.86694919426937825445757505001, 3.55858479146466087117254049237, 5.42256276793357544650064973651, 5.91496784936962241399101036041, 7.44445268402087159160073099768, 8.439673463199116733588540497238, 9.710099163967345657983701077059, 10.03428170579697789839389304342, 10.94054348308868652549869382528