Properties

Label 378.2.d.a
Level $378$
Weight $2$
Character orbit 378.d
Analytic conductor $3.018$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [378,2,Mod(377,378)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(378, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("378.377");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 378 = 2 \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 378.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.01834519640\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \zeta_{12}^{3} q^{2} - q^{4} + (\zeta_{12}^{3} - 2 \zeta_{12}) q^{5} + (\zeta_{12}^{2} - 3) q^{7} + \zeta_{12}^{3} q^{8} + (2 \zeta_{12}^{2} - 1) q^{10} - 3 \zeta_{12}^{3} q^{11} + (8 \zeta_{12}^{2} - 4) q^{13} + \cdots + ( - 3 \zeta_{12}^{3} - 5 \zeta_{12}) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 10 q^{7} + 4 q^{16} - 12 q^{22} - 8 q^{25} + 10 q^{28} - 8 q^{37} - 8 q^{43} + 24 q^{46} + 22 q^{49} - 24 q^{58} - 4 q^{64} + 8 q^{67} - 6 q^{70} + 32 q^{79} + 48 q^{85} + 12 q^{88} - 24 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/378\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(325\)
\(\chi(n)\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
377.1
0.866025 + 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
1.00000i 0 −1.00000 −1.73205 0 −2.50000 + 0.866025i 1.00000i 0 1.73205i
377.2 1.00000i 0 −1.00000 1.73205 0 −2.50000 0.866025i 1.00000i 0 1.73205i
377.3 1.00000i 0 −1.00000 −1.73205 0 −2.50000 0.866025i 1.00000i 0 1.73205i
377.4 1.00000i 0 −1.00000 1.73205 0 −2.50000 + 0.866025i 1.00000i 0 1.73205i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.b odd 2 1 inner
21.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 378.2.d.a 4
3.b odd 2 1 inner 378.2.d.a 4
4.b odd 2 1 3024.2.k.j 4
7.b odd 2 1 inner 378.2.d.a 4
9.c even 3 1 1134.2.m.e 4
9.c even 3 1 1134.2.m.f 4
9.d odd 6 1 1134.2.m.e 4
9.d odd 6 1 1134.2.m.f 4
12.b even 2 1 3024.2.k.j 4
21.c even 2 1 inner 378.2.d.a 4
28.d even 2 1 3024.2.k.j 4
63.l odd 6 1 1134.2.m.e 4
63.l odd 6 1 1134.2.m.f 4
63.o even 6 1 1134.2.m.e 4
63.o even 6 1 1134.2.m.f 4
84.h odd 2 1 3024.2.k.j 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
378.2.d.a 4 1.a even 1 1 trivial
378.2.d.a 4 3.b odd 2 1 inner
378.2.d.a 4 7.b odd 2 1 inner
378.2.d.a 4 21.c even 2 1 inner
1134.2.m.e 4 9.c even 3 1
1134.2.m.e 4 9.d odd 6 1
1134.2.m.e 4 63.l odd 6 1
1134.2.m.e 4 63.o even 6 1
1134.2.m.f 4 9.c even 3 1
1134.2.m.f 4 9.d odd 6 1
1134.2.m.f 4 63.l odd 6 1
1134.2.m.f 4 63.o even 6 1
3024.2.k.j 4 4.b odd 2 1
3024.2.k.j 4 12.b even 2 1
3024.2.k.j 4 28.d even 2 1
3024.2.k.j 4 84.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(378, [\chi])\):

\( T_{5}^{2} - 3 \) Copy content Toggle raw display
\( T_{13}^{2} + 48 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 5 T + 7)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 48)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 48)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 27)^{2} \) Copy content Toggle raw display
$37$ \( (T + 2)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$43$ \( (T + 2)^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 48)^{2} \) Copy content Toggle raw display
$67$ \( (T - 2)^{4} \) Copy content Toggle raw display
$71$ \( (T^{2} + 144)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 147)^{2} \) Copy content Toggle raw display
$79$ \( (T - 8)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 108)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 147)^{2} \) Copy content Toggle raw display
show more
show less