L(s) = 1 | + (−2 + 3.46i)2-s + (−3.86 + 6.68i)3-s + (−7.99 − 13.8i)4-s + (46.3 − 80.3i)5-s + (−15.4 − 26.7i)6-s + 13.5·7-s + 63.9·8-s + (91.6 + 158. i)9-s + (185. + 321. i)10-s + 407.·11-s + 123.·12-s + (−86.6 − 150. i)13-s + (−27.0 + 46.9i)14-s + (358. + 620. i)15-s + (−128 + 221. i)16-s + (822. − 1.42e3i)17-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.247 + 0.429i)3-s + (−0.249 − 0.433i)4-s + (0.829 − 1.43i)5-s + (−0.175 − 0.303i)6-s + 0.104·7-s + 0.353·8-s + (0.377 + 0.653i)9-s + (0.586 + 1.01i)10-s + 1.01·11-s + 0.247·12-s + (−0.142 − 0.246i)13-s + (−0.0369 + 0.0639i)14-s + (0.410 + 0.711i)15-s + (−0.125 + 0.216i)16-s + (0.690 − 1.19i)17-s + ⋯ |
Λ(s)=(=(38s/2ΓC(s)L(s)(0.981−0.193i)Λ(6−s)
Λ(s)=(=(38s/2ΓC(s+5/2)L(s)(0.981−0.193i)Λ(1−s)
Degree: |
2 |
Conductor: |
38
= 2⋅19
|
Sign: |
0.981−0.193i
|
Analytic conductor: |
6.09458 |
Root analytic conductor: |
2.46872 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ38(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 38, ( :5/2), 0.981−0.193i)
|
Particular Values
L(3) |
≈ |
1.44871+0.141750i |
L(21) |
≈ |
1.44871+0.141750i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(2−3.46i)T |
| 19 | 1+(−1.57e3−27.9i)T |
good | 3 | 1+(3.86−6.68i)T+(−121.5−210.i)T2 |
| 5 | 1+(−46.3+80.3i)T+(−1.56e3−2.70e3i)T2 |
| 7 | 1−13.5T+1.68e4T2 |
| 11 | 1−407.T+1.61e5T2 |
| 13 | 1+(86.6+150.i)T+(−1.85e5+3.21e5i)T2 |
| 17 | 1+(−822.+1.42e3i)T+(−7.09e5−1.22e6i)T2 |
| 23 | 1+(−778.−1.34e3i)T+(−3.21e6+5.57e6i)T2 |
| 29 | 1+(2.20e3+3.81e3i)T+(−1.02e7+1.77e7i)T2 |
| 31 | 1+1.48e3T+2.86e7T2 |
| 37 | 1−7.11e3T+6.93e7T2 |
| 41 | 1+(9.66e3−1.67e4i)T+(−5.79e7−1.00e8i)T2 |
| 43 | 1+(−7.84e3+1.35e4i)T+(−7.35e7−1.27e8i)T2 |
| 47 | 1+(−6.51e3−1.12e4i)T+(−1.14e8+1.98e8i)T2 |
| 53 | 1+(−820.−1.42e3i)T+(−2.09e8+3.62e8i)T2 |
| 59 | 1+(2.34e4−4.06e4i)T+(−3.57e8−6.19e8i)T2 |
| 61 | 1+(1.38e4+2.39e4i)T+(−4.22e8+7.31e8i)T2 |
| 67 | 1+(6.09e3+1.05e4i)T+(−6.75e8+1.16e9i)T2 |
| 71 | 1+(6.07e3−1.05e4i)T+(−9.02e8−1.56e9i)T2 |
| 73 | 1+(2.30e4−3.98e4i)T+(−1.03e9−1.79e9i)T2 |
| 79 | 1+(2.26e4−3.92e4i)T+(−1.53e9−2.66e9i)T2 |
| 83 | 1−2.36e4T+3.93e9T2 |
| 89 | 1+(5.75e4+9.97e4i)T+(−2.79e9+4.83e9i)T2 |
| 97 | 1+(1.95e4−3.37e4i)T+(−4.29e9−7.43e9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.71914372812583369668296940453, −14.12182948817379327869309178710, −13.16910691322104839230518168844, −11.67333786209880031910790889578, −9.836512979984287251146414921046, −9.216093812196277248307554844390, −7.64844536032300105947230201479, −5.68927117932890158187300857527, −4.70771868366663079448718224737, −1.21386934800942374400245448098,
1.58961081282473049753404043500, 3.45260822281105648367370282612, 6.16752379674396624988752092214, 7.25661304167949953723065053437, 9.298514749734345819503805984329, 10.34323473321207605132207964334, 11.49491725495303207868512580161, 12.66395796914739456495128145834, 14.09171782027158295510088904513, 14.90669632568257192877313302404