Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [38,6,Mod(7,38)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(38, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([2]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("38.7");
S:= CuspForms(chi, 6);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 38.c (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 |
|
−2.00000 | − | 3.46410i | −12.1694 | − | 21.0781i | −8.00000 | + | 13.8564i | −28.6588 | − | 49.6385i | −48.6777 | + | 84.3122i | 33.7394 | 64.0000 | −174.689 | + | 302.571i | −114.635 | + | 198.554i | ||||||||||||||||||||||||||||
7.2 | −2.00000 | − | 3.46410i | −3.86148 | − | 6.68827i | −8.00000 | + | 13.8564i | 46.3693 | + | 80.3140i | −15.4459 | + | 26.7531i | 13.5472 | 64.0000 | 91.6780 | − | 158.791i | 185.477 | − | 321.256i | |||||||||||||||||||||||||||||
7.3 | −2.00000 | − | 3.46410i | 4.18703 | + | 7.25215i | −8.00000 | + | 13.8564i | −12.5904 | − | 21.8073i | 16.7481 | − | 29.0086i | −187.086 | 64.0000 | 86.4375 | − | 149.714i | −50.3618 | + | 87.2292i | |||||||||||||||||||||||||||||
7.4 | −2.00000 | − | 3.46410i | 4.84386 | + | 8.38982i | −8.00000 | + | 13.8564i | −23.1201 | − | 40.0451i | 19.3755 | − | 33.5593i | 177.800 | 64.0000 | 74.5740 | − | 129.166i | −92.4803 | + | 160.181i | |||||||||||||||||||||||||||||
11.1 | −2.00000 | + | 3.46410i | −12.1694 | + | 21.0781i | −8.00000 | − | 13.8564i | −28.6588 | + | 49.6385i | −48.6777 | − | 84.3122i | 33.7394 | 64.0000 | −174.689 | − | 302.571i | −114.635 | − | 198.554i | |||||||||||||||||||||||||||||
11.2 | −2.00000 | + | 3.46410i | −3.86148 | + | 6.68827i | −8.00000 | − | 13.8564i | 46.3693 | − | 80.3140i | −15.4459 | − | 26.7531i | 13.5472 | 64.0000 | 91.6780 | + | 158.791i | 185.477 | + | 321.256i | |||||||||||||||||||||||||||||
11.3 | −2.00000 | + | 3.46410i | 4.18703 | − | 7.25215i | −8.00000 | − | 13.8564i | −12.5904 | + | 21.8073i | 16.7481 | + | 29.0086i | −187.086 | 64.0000 | 86.4375 | + | 149.714i | −50.3618 | − | 87.2292i | |||||||||||||||||||||||||||||
11.4 | −2.00000 | + | 3.46410i | 4.84386 | − | 8.38982i | −8.00000 | − | 13.8564i | −23.1201 | + | 40.0451i | 19.3755 | + | 33.5593i | 177.800 | 64.0000 | 74.5740 | + | 129.166i | −92.4803 | − | 160.181i | |||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 38.6.c.b | ✓ | 8 |
3.b | odd | 2 | 1 | 342.6.g.d | 8 | ||
4.b | odd | 2 | 1 | 304.6.i.b | 8 | ||
19.c | even | 3 | 1 | inner | 38.6.c.b | ✓ | 8 |
19.c | even | 3 | 1 | 722.6.a.j | 4 | ||
19.d | odd | 6 | 1 | 722.6.a.g | 4 | ||
57.h | odd | 6 | 1 | 342.6.g.d | 8 | ||
76.g | odd | 6 | 1 | 304.6.i.b | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
38.6.c.b | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
38.6.c.b | ✓ | 8 | 19.c | even | 3 | 1 | inner |
304.6.i.b | 8 | 4.b | odd | 2 | 1 | ||
304.6.i.b | 8 | 76.g | odd | 6 | 1 | ||
342.6.g.d | 8 | 3.b | odd | 2 | 1 | ||
342.6.g.d | 8 | 57.h | odd | 6 | 1 | ||
722.6.a.g | 4 | 19.d | odd | 6 | 1 | ||
722.6.a.j | 4 | 19.c | even | 3 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .