L(s) = 1 | + 1.90i·3-s − 1.17i·5-s + 7-s − 2.61·9-s + 2.23·15-s + 17-s + 1.90i·21-s − 0.381·25-s − 3.07i·27-s + 1.61·31-s − 1.17i·35-s − 0.618·41-s + 1.90i·43-s + 3.07i·45-s + 49-s + ⋯ |
L(s) = 1 | + 1.90i·3-s − 1.17i·5-s + 7-s − 2.61·9-s + 2.23·15-s + 17-s + 1.90i·21-s − 0.381·25-s − 3.07i·27-s + 1.61·31-s − 1.17i·35-s − 0.618·41-s + 1.90i·43-s + 3.07i·45-s + 49-s + ⋯ |
Λ(s)=(=(3808s/2ΓC(s)L(s)(0.309−0.951i)Λ(1−s)
Λ(s)=(=(3808s/2ΓC(s)L(s)(0.309−0.951i)Λ(1−s)
Degree: |
2 |
Conductor: |
3808
= 25⋅7⋅17
|
Sign: |
0.309−0.951i
|
Analytic conductor: |
1.90043 |
Root analytic conductor: |
1.37856 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3808(3569,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3808, ( :0), 0.309−0.951i)
|
Particular Values
L(21) |
≈ |
1.424891699 |
L(21) |
≈ |
1.424891699 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1−T |
| 17 | 1−T |
good | 3 | 1−1.90iT−T2 |
| 5 | 1+1.17iT−T2 |
| 11 | 1+T2 |
| 13 | 1+T2 |
| 19 | 1+T2 |
| 23 | 1−T2 |
| 29 | 1+T2 |
| 31 | 1−1.61T+T2 |
| 37 | 1+T2 |
| 41 | 1+0.618T+T2 |
| 43 | 1−1.90iT−T2 |
| 47 | 1−T2 |
| 53 | 1−1.17iT−T2 |
| 59 | 1+T2 |
| 61 | 1+1.90iT−T2 |
| 67 | 1−1.17iT−T2 |
| 71 | 1−T2 |
| 73 | 1−0.618T+T2 |
| 79 | 1−T2 |
| 83 | 1+T2 |
| 89 | 1−T2 |
| 97 | 1−1.61T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.901873069103863427741912746592, −8.264139518971691248545644220403, −7.83373763752806333799851058333, −6.26134955352158490656437796660, −5.44680303014830919589535263719, −4.84430981138075124449622775563, −4.52203560917423071567810775307, −3.64511799659171553158835914152, −2.68638259072815263849897155521, −1.16836248226138173994248206264,
1.01955770609237974815582454792, 2.01237503475484045843156791844, 2.69590975403555762289568677486, 3.57189688292854495768567703790, 5.03216854716428668642060173521, 5.80113768708420282360123574107, 6.53873918865929285003444528177, 7.09562211211563206774181965664, 7.68034663816381061871127267557, 8.220008707161007166195492136074