L(s) = 1 | + 1.90i·3-s − 1.17i·5-s + 7-s − 2.61·9-s + 2.23·15-s + 17-s + 1.90i·21-s − 0.381·25-s − 3.07i·27-s + 1.61·31-s − 1.17i·35-s − 0.618·41-s + 1.90i·43-s + 3.07i·45-s + 49-s + ⋯ |
L(s) = 1 | + 1.90i·3-s − 1.17i·5-s + 7-s − 2.61·9-s + 2.23·15-s + 17-s + 1.90i·21-s − 0.381·25-s − 3.07i·27-s + 1.61·31-s − 1.17i·35-s − 0.618·41-s + 1.90i·43-s + 3.07i·45-s + 49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.309 - 0.951i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.309 - 0.951i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.424891699\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.424891699\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 - T \) |
| 17 | \( 1 - T \) |
good | 3 | \( 1 - 1.90iT - T^{2} \) |
| 5 | \( 1 + 1.17iT - T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 19 | \( 1 + T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 - 1.61T + T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 + 0.618T + T^{2} \) |
| 43 | \( 1 - 1.90iT - T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 - 1.17iT - T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 + 1.90iT - T^{2} \) |
| 67 | \( 1 - 1.17iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - 0.618T + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - 1.61T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.901873069103863427741912746592, −8.264139518971691248545644220403, −7.83373763752806333799851058333, −6.26134955352158490656437796660, −5.44680303014830919589535263719, −4.84430981138075124449622775563, −4.52203560917423071567810775307, −3.64511799659171553158835914152, −2.68638259072815263849897155521, −1.16836248226138173994248206264,
1.01955770609237974815582454792, 2.01237503475484045843156791844, 2.69590975403555762289568677486, 3.57189688292854495768567703790, 5.03216854716428668642060173521, 5.80113768708420282360123574107, 6.53873918865929285003444528177, 7.09562211211563206774181965664, 7.68034663816381061871127267557, 8.220008707161007166195492136074