Properties

Label 3808.1.e.d
Level $3808$
Weight $1$
Character orbit 3808.e
Analytic conductor $1.900$
Analytic rank $0$
Dimension $4$
Projective image $D_{10}$
CM discriminant -119
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3808,1,Mod(3569,3808)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3808, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3808.3569");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3808 = 2^{5} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3808.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.90043956811\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 952)
Projective image: \(D_{10}\)
Projective field: Galois closure of 10.2.6571095523328.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + (\zeta_{10}^{4} + \zeta_{10}) q^{3} + (\zeta_{10}^{3} + \zeta_{10}^{2}) q^{5} + q^{7} + ( - \zeta_{10}^{3} + \zeta_{10}^{2} - 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\zeta_{10}^{4} + \zeta_{10}) q^{3} + (\zeta_{10}^{3} + \zeta_{10}^{2}) q^{5} + q^{7} + ( - \zeta_{10}^{3} + \zeta_{10}^{2} - 1) q^{9} + (\zeta_{10}^{4} + \zeta_{10}^{3} + \cdots - \zeta_{10}) q^{15}+ \cdots + (\zeta_{10}^{3} - \zeta_{10}^{2}) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{7} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{7} - 6 q^{9} + 4 q^{17} - 6 q^{25} + 2 q^{31} + 2 q^{41} + 4 q^{49} - 6 q^{63} - 2 q^{73} + 4 q^{81} + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3808\mathbb{Z}\right)^\times\).

\(n\) \(2143\) \(2689\) \(3265\) \(3333\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3569.1
−0.309017 0.951057i
0.809017 0.587785i
0.809017 + 0.587785i
−0.309017 + 0.951057i
0 1.90211i 0 1.17557i 0 1.00000 0 −2.61803 0
3569.2 0 1.17557i 0 1.90211i 0 1.00000 0 −0.381966 0
3569.3 0 1.17557i 0 1.90211i 0 1.00000 0 −0.381966 0
3569.4 0 1.90211i 0 1.17557i 0 1.00000 0 −2.61803 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
119.d odd 2 1 CM by \(\Q(\sqrt{-119}) \)
8.b even 2 1 inner
952.e odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3808.1.e.d 4
4.b odd 2 1 952.1.e.d yes 4
7.b odd 2 1 3808.1.e.c 4
8.b even 2 1 inner 3808.1.e.d 4
8.d odd 2 1 952.1.e.d yes 4
17.b even 2 1 3808.1.e.c 4
28.d even 2 1 952.1.e.c 4
56.e even 2 1 952.1.e.c 4
56.h odd 2 1 3808.1.e.c 4
68.d odd 2 1 952.1.e.c 4
119.d odd 2 1 CM 3808.1.e.d 4
136.e odd 2 1 952.1.e.c 4
136.h even 2 1 3808.1.e.c 4
476.e even 2 1 952.1.e.d yes 4
952.e odd 2 1 inner 3808.1.e.d 4
952.k even 2 1 952.1.e.d yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
952.1.e.c 4 28.d even 2 1
952.1.e.c 4 56.e even 2 1
952.1.e.c 4 68.d odd 2 1
952.1.e.c 4 136.e odd 2 1
952.1.e.d yes 4 4.b odd 2 1
952.1.e.d yes 4 8.d odd 2 1
952.1.e.d yes 4 476.e even 2 1
952.1.e.d yes 4 952.k even 2 1
3808.1.e.c 4 7.b odd 2 1
3808.1.e.c 4 17.b even 2 1
3808.1.e.c 4 56.h odd 2 1
3808.1.e.c 4 136.h even 2 1
3808.1.e.d 4 1.a even 1 1 trivial
3808.1.e.d 4 8.b even 2 1 inner
3808.1.e.d 4 119.d odd 2 1 CM
3808.1.e.d 4 952.e odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3808, [\chi])\):

\( T_{3}^{4} + 5T_{3}^{2} + 5 \) Copy content Toggle raw display
\( T_{31}^{2} - T_{31} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 5T^{2} + 5 \) Copy content Toggle raw display
$5$ \( T^{4} + 5T^{2} + 5 \) Copy content Toggle raw display
$7$ \( (T - 1)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T - 1)^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} - T - 1)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} - T - 1)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 5T^{2} + 5 \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} + 5T^{2} + 5 \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} + 5T^{2} + 5 \) Copy content Toggle raw display
$67$ \( T^{4} + 5T^{2} + 5 \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} - T - 1)^{2} \) Copy content Toggle raw display
show more
show less