Properties

Label 3808.1.e.d
Level 38083808
Weight 11
Character orbit 3808.e
Analytic conductor 1.9001.900
Analytic rank 00
Dimension 44
Projective image D10D_{10}
CM discriminant -119
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3808,1,Mod(3569,3808)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3808, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3808.3569");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3808=25717 3808 = 2^{5} \cdot 7 \cdot 17
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3808.e (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.900439568111.90043956811
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ10)\Q(\zeta_{10})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3+x2x+1 x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 952)
Projective image: D10D_{10}
Projective field: Galois closure of 10.2.6571095523328.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+(ζ104+ζ10)q3+(ζ103+ζ102)q5+q7+(ζ103+ζ1021)q9+(ζ104+ζ103+ζ10)q15++(ζ103ζ102)q97+O(q100) q + (\zeta_{10}^{4} + \zeta_{10}) q^{3} + (\zeta_{10}^{3} + \zeta_{10}^{2}) q^{5} + q^{7} + ( - \zeta_{10}^{3} + \zeta_{10}^{2} - 1) q^{9} + (\zeta_{10}^{4} + \zeta_{10}^{3} + \cdots - \zeta_{10}) q^{15}+ \cdots + (\zeta_{10}^{3} - \zeta_{10}^{2}) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q76q9+4q176q25+2q31+2q41+4q496q632q73+4q81+2q97+O(q100) 4 q + 4 q^{7} - 6 q^{9} + 4 q^{17} - 6 q^{25} + 2 q^{31} + 2 q^{41} + 4 q^{49} - 6 q^{63} - 2 q^{73} + 4 q^{81} + 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3808Z)×\left(\mathbb{Z}/3808\mathbb{Z}\right)^\times.

nn 21432143 26892689 32653265 33333333
χ(n)\chi(n) 11 1-1 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
3569.1
−0.309017 0.951057i
0.809017 0.587785i
0.809017 + 0.587785i
−0.309017 + 0.951057i
0 1.90211i 0 1.17557i 0 1.00000 0 −2.61803 0
3569.2 0 1.17557i 0 1.90211i 0 1.00000 0 −0.381966 0
3569.3 0 1.17557i 0 1.90211i 0 1.00000 0 −0.381966 0
3569.4 0 1.90211i 0 1.17557i 0 1.00000 0 −2.61803 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
119.d odd 2 1 CM by Q(119)\Q(\sqrt{-119})
8.b even 2 1 inner
952.e odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3808.1.e.d 4
4.b odd 2 1 952.1.e.d yes 4
7.b odd 2 1 3808.1.e.c 4
8.b even 2 1 inner 3808.1.e.d 4
8.d odd 2 1 952.1.e.d yes 4
17.b even 2 1 3808.1.e.c 4
28.d even 2 1 952.1.e.c 4
56.e even 2 1 952.1.e.c 4
56.h odd 2 1 3808.1.e.c 4
68.d odd 2 1 952.1.e.c 4
119.d odd 2 1 CM 3808.1.e.d 4
136.e odd 2 1 952.1.e.c 4
136.h even 2 1 3808.1.e.c 4
476.e even 2 1 952.1.e.d yes 4
952.e odd 2 1 inner 3808.1.e.d 4
952.k even 2 1 952.1.e.d yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
952.1.e.c 4 28.d even 2 1
952.1.e.c 4 56.e even 2 1
952.1.e.c 4 68.d odd 2 1
952.1.e.c 4 136.e odd 2 1
952.1.e.d yes 4 4.b odd 2 1
952.1.e.d yes 4 8.d odd 2 1
952.1.e.d yes 4 476.e even 2 1
952.1.e.d yes 4 952.k even 2 1
3808.1.e.c 4 7.b odd 2 1
3808.1.e.c 4 17.b even 2 1
3808.1.e.c 4 56.h odd 2 1
3808.1.e.c 4 136.h even 2 1
3808.1.e.d 4 1.a even 1 1 trivial
3808.1.e.d 4 8.b even 2 1 inner
3808.1.e.d 4 119.d odd 2 1 CM
3808.1.e.d 4 952.e odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(3808,[χ])S_{1}^{\mathrm{new}}(3808, [\chi]):

T34+5T32+5 T_{3}^{4} + 5T_{3}^{2} + 5 Copy content Toggle raw display
T312T311 T_{31}^{2} - T_{31} - 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4+5T2+5 T^{4} + 5T^{2} + 5 Copy content Toggle raw display
55 T4+5T2+5 T^{4} + 5T^{2} + 5 Copy content Toggle raw display
77 (T1)4 (T - 1)^{4} Copy content Toggle raw display
1111 T4 T^{4} Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 (T1)4 (T - 1)^{4} Copy content Toggle raw display
1919 T4 T^{4} Copy content Toggle raw display
2323 T4 T^{4} Copy content Toggle raw display
2929 T4 T^{4} Copy content Toggle raw display
3131 (T2T1)2 (T^{2} - T - 1)^{2} Copy content Toggle raw display
3737 T4 T^{4} Copy content Toggle raw display
4141 (T2T1)2 (T^{2} - T - 1)^{2} Copy content Toggle raw display
4343 T4+5T2+5 T^{4} + 5T^{2} + 5 Copy content Toggle raw display
4747 T4 T^{4} Copy content Toggle raw display
5353 T4+5T2+5 T^{4} + 5T^{2} + 5 Copy content Toggle raw display
5959 T4 T^{4} Copy content Toggle raw display
6161 T4+5T2+5 T^{4} + 5T^{2} + 5 Copy content Toggle raw display
6767 T4+5T2+5 T^{4} + 5T^{2} + 5 Copy content Toggle raw display
7171 T4 T^{4} Copy content Toggle raw display
7373 (T2+T1)2 (T^{2} + T - 1)^{2} Copy content Toggle raw display
7979 T4 T^{4} Copy content Toggle raw display
8383 T4 T^{4} Copy content Toggle raw display
8989 T4 T^{4} Copy content Toggle raw display
9797 (T2T1)2 (T^{2} - T - 1)^{2} Copy content Toggle raw display
show more
show less