L(s) = 1 | + 4·7-s − 9-s + 4·17-s − 25-s + 2·31-s + 2·41-s + 10·49-s − 4·63-s − 2·73-s + 2·97-s + 16·119-s − 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 4·153-s + 157-s + 163-s + 167-s − 4·169-s + 173-s − 4·175-s + 179-s + 181-s + ⋯ |
L(s) = 1 | + 4·7-s − 9-s + 4·17-s − 25-s + 2·31-s + 2·41-s + 10·49-s − 4·63-s − 2·73-s + 2·97-s + 16·119-s − 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 4·153-s + 157-s + 163-s + 167-s − 4·169-s + 173-s − 4·175-s + 179-s + 181-s + ⋯ |
Λ(s)=(=((220⋅74⋅174)s/2ΓC(s)4L(s)Λ(1−s)
Λ(s)=(=((220⋅74⋅174)s/2ΓC(s)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
220⋅74⋅174
|
Sign: |
1
|
Analytic conductor: |
13.0441 |
Root analytic conductor: |
1.37856 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 220⋅74⋅174, ( :0,0,0,0), 1)
|
Particular Values
L(21) |
≈ |
4.641926122 |
L(21) |
≈ |
4.641926122 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 7 | C1 | (1−T)4 |
| 17 | C1 | (1−T)4 |
good | 3 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 5 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 11 | C2 | (1+T2)4 |
| 13 | C2 | (1+T2)4 |
| 19 | C2 | (1+T2)4 |
| 23 | C1×C1 | (1−T)4(1+T)4 |
| 29 | C2 | (1+T2)4 |
| 31 | C4 | (1−T+T2−T3+T4)2 |
| 37 | C2 | (1+T2)4 |
| 41 | C4 | (1−T+T2−T3+T4)2 |
| 43 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 47 | C1×C1 | (1−T)4(1+T)4 |
| 53 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 59 | C2 | (1+T2)4 |
| 61 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 67 | C4×C4 | (1−T+T2−T3+T4)(1+T+T2+T3+T4) |
| 71 | C1×C1 | (1−T)4(1+T)4 |
| 73 | C4 | (1+T+T2+T3+T4)2 |
| 79 | C1×C1 | (1−T)4(1+T)4 |
| 83 | C2 | (1+T2)4 |
| 89 | C1×C1 | (1−T)4(1+T)4 |
| 97 | C4 | (1−T+T2−T3+T4)2 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−5.93513208391249524060185296544, −5.85186660711243372905135614546, −5.80113768708420282360123574107, −5.57893420695897229207622306939, −5.44680303014830919589535263719, −5.18469459265082166997242566710, −5.03216854716428668642060173521, −4.84430981138075124449622775563, −4.60164786023931492249245285627, −4.52203560917423071567810775307, −4.27887544337917475954071656420, −4.02326968539852381565238900161, −3.64511799659171553158835914152, −3.57189688292854495768567703790, −3.55185959981753435916359257989, −2.88624268658424691385516941650, −2.69590975403555762289568677486, −2.68638259072815263849897155521, −2.42015973939543157762047423402, −2.01237503475484045843156791844, −1.80917207467162596516210792736, −1.44197080686420177861433626896, −1.16836248226138173994248206264, −1.01955770609237974815582454792, −0.984455087445693683622800858141,
0.984455087445693683622800858141, 1.01955770609237974815582454792, 1.16836248226138173994248206264, 1.44197080686420177861433626896, 1.80917207467162596516210792736, 2.01237503475484045843156791844, 2.42015973939543157762047423402, 2.68638259072815263849897155521, 2.69590975403555762289568677486, 2.88624268658424691385516941650, 3.55185959981753435916359257989, 3.57189688292854495768567703790, 3.64511799659171553158835914152, 4.02326968539852381565238900161, 4.27887544337917475954071656420, 4.52203560917423071567810775307, 4.60164786023931492249245285627, 4.84430981138075124449622775563, 5.03216854716428668642060173521, 5.18469459265082166997242566710, 5.44680303014830919589535263719, 5.57893420695897229207622306939, 5.80113768708420282360123574107, 5.85186660711243372905135614546, 5.93513208391249524060185296544