Properties

Label 8-3808e4-1.1-c0e4-0-4
Degree $8$
Conductor $2.103\times 10^{14}$
Sign $1$
Analytic cond. $13.0441$
Root an. cond. $1.37856$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s − 9-s + 4·17-s − 25-s + 2·31-s + 2·41-s + 10·49-s − 4·63-s − 2·73-s + 2·97-s + 16·119-s − 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 4·153-s + 157-s + 163-s + 167-s − 4·169-s + 173-s − 4·175-s + 179-s + 181-s + ⋯
L(s)  = 1  + 4·7-s − 9-s + 4·17-s − 25-s + 2·31-s + 2·41-s + 10·49-s − 4·63-s − 2·73-s + 2·97-s + 16·119-s − 4·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s − 4·153-s + 157-s + 163-s + 167-s − 4·169-s + 173-s − 4·175-s + 179-s + 181-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 7^{4} \cdot 17^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{20} \cdot 7^{4} \cdot 17^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{20} \cdot 7^{4} \cdot 17^{4}\)
Sign: $1$
Analytic conductor: \(13.0441\)
Root analytic conductor: \(1.37856\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{20} \cdot 7^{4} \cdot 17^{4} ,\ ( \ : 0, 0, 0, 0 ),\ 1 )\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(4.641926122\)
\(L(\frac12)\) \(\approx\) \(4.641926122\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_1$ \( ( 1 - T )^{4} \)
17$C_1$ \( ( 1 - T )^{4} \)
good3$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
5$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
11$C_2$ \( ( 1 + T^{2} )^{4} \)
13$C_2$ \( ( 1 + T^{2} )^{4} \)
19$C_2$ \( ( 1 + T^{2} )^{4} \)
23$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
29$C_2$ \( ( 1 + T^{2} )^{4} \)
31$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
37$C_2$ \( ( 1 + T^{2} )^{4} \)
41$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
43$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
47$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
53$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
59$C_2$ \( ( 1 + T^{2} )^{4} \)
61$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
67$C_4$$\times$$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )( 1 + T + T^{2} + T^{3} + T^{4} ) \)
71$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
73$C_4$ \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2} \)
79$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
83$C_2$ \( ( 1 + T^{2} )^{4} \)
89$C_1$$\times$$C_1$ \( ( 1 - T )^{4}( 1 + T )^{4} \)
97$C_4$ \( ( 1 - T + T^{2} - T^{3} + T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.93513208391249524060185296544, −5.85186660711243372905135614546, −5.80113768708420282360123574107, −5.57893420695897229207622306939, −5.44680303014830919589535263719, −5.18469459265082166997242566710, −5.03216854716428668642060173521, −4.84430981138075124449622775563, −4.60164786023931492249245285627, −4.52203560917423071567810775307, −4.27887544337917475954071656420, −4.02326968539852381565238900161, −3.64511799659171553158835914152, −3.57189688292854495768567703790, −3.55185959981753435916359257989, −2.88624268658424691385516941650, −2.69590975403555762289568677486, −2.68638259072815263849897155521, −2.42015973939543157762047423402, −2.01237503475484045843156791844, −1.80917207467162596516210792736, −1.44197080686420177861433626896, −1.16836248226138173994248206264, −1.01955770609237974815582454792, −0.984455087445693683622800858141, 0.984455087445693683622800858141, 1.01955770609237974815582454792, 1.16836248226138173994248206264, 1.44197080686420177861433626896, 1.80917207467162596516210792736, 2.01237503475484045843156791844, 2.42015973939543157762047423402, 2.68638259072815263849897155521, 2.69590975403555762289568677486, 2.88624268658424691385516941650, 3.55185959981753435916359257989, 3.57189688292854495768567703790, 3.64511799659171553158835914152, 4.02326968539852381565238900161, 4.27887544337917475954071656420, 4.52203560917423071567810775307, 4.60164786023931492249245285627, 4.84430981138075124449622775563, 5.03216854716428668642060173521, 5.18469459265082166997242566710, 5.44680303014830919589535263719, 5.57893420695897229207622306939, 5.80113768708420282360123574107, 5.85186660711243372905135614546, 5.93513208391249524060185296544

Graph of the $Z$-function along the critical line