Properties

Label 3808.1.e.d.3569.3
Level 38083808
Weight 11
Character 3808.3569
Analytic conductor 1.9001.900
Analytic rank 00
Dimension 44
Projective image D10D_{10}
CM discriminant -119
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3808,1,Mod(3569,3808)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3808, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3808.3569");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3808=25717 3808 = 2^{5} \cdot 7 \cdot 17
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3808.e (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.900439568111.90043956811
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ10)\Q(\zeta_{10})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3+x2x+1 x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 952)
Projective image: D10D_{10}
Projective field: Galois closure of 10.2.6571095523328.1

Embedding invariants

Embedding label 3569.3
Root 0.809017+0.587785i0.809017 + 0.587785i of defining polynomial
Character χ\chi == 3808.3569
Dual form 3808.1.e.d.3569.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.17557iq3+1.90211iq5+1.00000q70.381966q92.23607q15+1.00000q17+1.17557iq212.61803q25+0.726543iq270.618034q31+1.90211iq35+1.61803q41+1.17557iq430.726543iq45+1.00000q49+1.17557iq511.90211iq531.17557iq610.381966q631.90211iq671.61803q733.07768iq751.23607q81+1.90211iq850.726543iq930.618034q97+O(q100)q+1.17557i q^{3} +1.90211i q^{5} +1.00000 q^{7} -0.381966 q^{9} -2.23607 q^{15} +1.00000 q^{17} +1.17557i q^{21} -2.61803 q^{25} +0.726543i q^{27} -0.618034 q^{31} +1.90211i q^{35} +1.61803 q^{41} +1.17557i q^{43} -0.726543i q^{45} +1.00000 q^{49} +1.17557i q^{51} -1.90211i q^{53} -1.17557i q^{61} -0.381966 q^{63} -1.90211i q^{67} -1.61803 q^{73} -3.07768i q^{75} -1.23607 q^{81} +1.90211i q^{85} -0.726543i q^{93} -0.618034 q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q76q9+4q176q25+2q31+2q41+4q496q632q73+4q81+2q97+O(q100) 4 q + 4 q^{7} - 6 q^{9} + 4 q^{17} - 6 q^{25} + 2 q^{31} + 2 q^{41} + 4 q^{49} - 6 q^{63} - 2 q^{73} + 4 q^{81} + 2 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3808Z)×\left(\mathbb{Z}/3808\mathbb{Z}\right)^\times.

nn 21432143 26892689 32653265 33333333
χ(n)\chi(n) 11 1-1 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 1.17557i 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
44 0 0
55 1.90211i 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
66 0 0
77 1.00000 1.00000
88 0 0
99 −0.381966 −0.381966
1010 0 0
1111 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1212 0 0
1313 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1414 0 0
1515 −2.23607 −2.23607
1616 0 0
1717 1.00000 1.00000
1818 0 0
1919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2020 0 0
2121 1.17557i 1.17557i
2222 0 0
2323 0 0 1.00000 00
−1.00000 π\pi
2424 0 0
2525 −2.61803 −2.61803
2626 0 0
2727 0.726543i 0.726543i
2828 0 0
2929 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3030 0 0
3131 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
3232 0 0
3333 0 0
3434 0 0
3535 1.90211i 1.90211i
3636 0 0
3737 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3838 0 0
3939 0 0
4040 0 0
4141 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
4242 0 0
4343 1.17557i 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
4444 0 0
4545 − 0.726543i − 0.726543i
4646 0 0
4747 0 0 1.00000 00
−1.00000 π\pi
4848 0 0
4949 1.00000 1.00000
5050 0 0
5151 1.17557i 1.17557i
5252 0 0
5353 − 1.90211i − 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6060 0 0
6161 − 1.17557i − 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
6262 0 0
6363 −0.381966 −0.381966
6464 0 0
6565 0 0
6666 0 0
6767 − 1.90211i − 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 1.00000 00
−1.00000 π\pi
7272 0 0
7373 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
7474 0 0
7575 − 3.07768i − 3.07768i
7676 0 0
7777 0 0
7878 0 0
7979 0 0 1.00000 00
−1.00000 π\pi
8080 0 0
8181 −1.23607 −1.23607
8282 0 0
8383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8484 0 0
8585 1.90211i 1.90211i
8686 0 0
8787 0 0
8888 0 0
8989 0 0 1.00000 00
−1.00000 π\pi
9090 0 0
9191 0 0
9292 0 0
9393 − 0.726543i − 0.726543i
9494 0 0
9595 0 0
9696 0 0
9797 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
9898 0 0
9999 0 0
100100 0 0
101101 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
102102 0 0
103103 0 0 1.00000 00
−1.00000 π\pi
104104 0 0
105105 −2.23607 −2.23607
106106 0 0
107107 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
108108 0 0
109109 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
110110 0 0
111111 0 0
112112 0 0
113113 0 0 1.00000 00
−1.00000 π\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 0 0
119119 1.00000 1.00000
120120 0 0
121121 −1.00000 −1.00000
122122 0 0
123123 1.90211i 1.90211i
124124 0 0
125125 − 3.07768i − 3.07768i
126126 0 0
127127 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
128128 0 0
129129 −1.38197 −1.38197
130130 0 0
131131 0 0 1.00000 00
−1.00000 π\pi
132132 0 0
133133 0 0
134134 0 0
135135 −1.38197 −1.38197
136136 0 0
137137 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
138138 0 0
139139 − 1.90211i − 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 1.17557i 1.17557i
148148 0 0
149149 − 1.17557i − 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
150150 0 0
151151 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
152152 0 0
153153 −0.381966 −0.381966
154154 0 0
155155 − 1.17557i − 1.17557i
156156 0 0
157157 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
158158 0 0
159159 2.23607 2.23607
160160 0 0
161161 0 0
162162 0 0
163163 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
164164 0 0
165165 0 0
166166 0 0
167167 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
168168 0 0
169169 −1.00000 −1.00000
170170 0 0
171171 0 0
172172 0 0
173173 1.17557i 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
174174 0 0
175175 −2.61803 −2.61803
176176 0 0
177177 0 0
178178 0 0
179179 − 1.17557i − 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 1.38197 1.38197
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0.726543i 0.726543i
190190 0 0
191191 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
192192 0 0
193193 0 0 1.00000 00
−1.00000 π\pi
194194 0 0
195195 0 0
196196 0 0
197197 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
198198 0 0
199199 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
200200 0 0
201201 2.23607 2.23607
202202 0 0
203203 0 0
204204 0 0
205205 3.07768i 3.07768i
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
212212 0 0
213213 0 0
214214 0 0
215215 −2.23607 −2.23607
216216 0 0
217217 −0.618034 −0.618034
218218 0 0
219219 − 1.90211i − 1.90211i
220220 0 0
221221 0 0
222222 0 0
223223 0 0 1.00000 00
−1.00000 π\pi
224224 0 0
225225 1.00000 1.00000
226226 0 0
227227 1.90211i 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
228228 0 0
229229 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 1.00000 00
−1.00000 π\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
240240 0 0
241241 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
242242 0 0
243243 − 0.726543i − 0.726543i
244244 0 0
245245 1.90211i 1.90211i
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 0 0
254254 0 0
255255 −2.23607 −2.23607
256256 0 0
257257 0 0 1.00000 00
−1.00000 π\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
264264 0 0
265265 3.61803 3.61803
266266 0 0
267267 0 0
268268 0 0
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
278278 0 0
279279 0.236068 0.236068
280280 0 0
281281 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
282282 0 0
283283 1.90211i 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
284284 0 0
285285 0 0
286286 0 0
287287 1.61803 1.61803
288288 0 0
289289 1.00000 1.00000
290290 0 0
291291 − 0.726543i − 0.726543i
292292 0 0
293293 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 1.17557i 1.17557i
302302 0 0
303303 0 0
304304 0 0
305305 2.23607 2.23607
306306 0 0
307307 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
308308 0 0
309309 0 0
310310 0 0
311311 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
312312 0 0
313313 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
314314 0 0
315315 − 0.726543i − 0.726543i
316316 0 0
317317 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 − 1.90211i − 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
332332 0 0
333333 0 0
334334 0 0
335335 3.61803 3.61803
336336 0 0
337337 0 0 1.00000 00
−1.00000 π\pi
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 1.00000 1.00000
344344 0 0
345345 0 0
346346 0 0
347347 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
348348 0 0
349349 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 1.00000 00
−1.00000 π\pi
354354 0 0
355355 0 0
356356 0 0
357357 1.17557i 1.17557i
358358 0 0
359359 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
360360 0 0
361361 −1.00000 −1.00000
362362 0 0
363363 − 1.17557i − 1.17557i
364364 0 0
365365 − 3.07768i − 3.07768i
366366 0 0
367367 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
368368 0 0
369369 −0.618034 −0.618034
370370 0 0
371371 − 1.90211i − 1.90211i
372372 0 0
373373 − 1.17557i − 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
374374 0 0
375375 3.61803 3.61803
376376 0 0
377377 0 0
378378 0 0
379379 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
380380 0 0
381381 0.726543i 0.726543i
382382 0 0
383383 0 0 1.00000 00
−1.00000 π\pi
384384 0 0
385385 0 0
386386 0 0
387387 − 0.449028i − 0.449028i
388388 0 0
389389 1.90211i 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 1.90211i 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
398398 0 0
399399 0 0
400400 0 0
401401 0 0 1.00000 00
−1.00000 π\pi
402402 0 0
403403 0 0
404404 0 0
405405 − 2.35114i − 2.35114i
406406 0 0
407407 0 0
408408 0 0
409409 0 0 1.00000 00
−1.00000 π\pi
410410 0 0
411411 1.90211i 1.90211i
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 2.23607 2.23607
418418 0 0
419419 1.90211i 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
420420 0 0
421421 1.17557i 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
422422 0 0
423423 0 0
424424 0 0
425425 −2.61803 −2.61803
426426 0 0
427427 − 1.17557i − 1.17557i
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000 00
−1.00000 π\pi
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
440440 0 0
441441 −0.381966 −0.381966
442442 0 0
443443 0 0 1.00000 00
−1.00000 π\pi
444444 0 0
445445 0 0
446446 0 0
447447 1.38197 1.38197
448448 0 0
449449 0 0 1.00000 00
−1.00000 π\pi
450450 0 0
451451 0 0
452452 0 0
453453 − 1.90211i − 1.90211i
454454 0 0
455455 0 0
456456 0 0
457457 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
458458 0 0
459459 0.726543i 0.726543i
460460 0 0
461461 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
462462 0 0
463463 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
464464 0 0
465465 1.38197 1.38197
466466 0 0
467467 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
468468 0 0
469469 − 1.90211i − 1.90211i
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0.726543i 0.726543i
478478 0 0
479479 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 0 0
485485 − 1.17557i − 1.17557i
486486 0 0
487487 0 0 1.00000 00
−1.00000 π\pi
488488 0 0
489489 0 0
490490 0 0
491491 1.90211i 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
500500 0 0
501501 1.90211i 1.90211i
502502 0 0
503503 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
504504 0 0
505505 0 0
506506 0 0
507507 − 1.17557i − 1.17557i
508508 0 0
509509 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
510510 0 0
511511 −1.61803 −1.61803
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 −1.38197 −1.38197
520520 0 0
521521 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
522522 0 0
523523 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
524524 0 0
525525 − 3.07768i − 3.07768i
526526 0 0
527527 −0.618034 −0.618034
528528 0 0
529529 1.00000 1.00000
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 1.38197 1.38197
538538 0 0
539539 0 0
540540 0 0
541541 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
548548 0 0
549549 0.449028i 0.449028i
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 0 0 1.00000 00
−1.00000 π\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
564564 0 0
565565 0 0
566566 0 0
567567 −1.23607 −1.23607
568568 0 0
569569 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
570570 0 0
571571 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
572572 0 0
573573 0.726543i 0.726543i
574574 0 0
575575 0 0
576576 0 0
577577 0 0 1.00000 00
−1.00000 π\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0 0 1.00000 00
−1.00000 π\pi
594594 0 0
595595 1.90211i 1.90211i
596596 0 0
597597 − 1.90211i − 1.90211i
598598 0 0
599599 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
600600 0 0
601601 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
602602 0 0
603603 0.726543i 0.726543i
604604 0 0
605605 − 1.90211i − 1.90211i
606606 0 0
607607 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 − 1.90211i − 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
614614 0 0
615615 −3.61803 −3.61803
616616 0 0
617617 0 0 1.00000 00
−1.00000 π\pi
618618 0 0
619619 0 0 1.00000 00
−1.00000 π\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 3.23607 3.23607
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
632632 0 0
633633 0 0
634634 0 0
635635 1.17557i 1.17557i
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 0 0 1.00000 00
−1.00000 π\pi
642642 0 0
643643 − 1.17557i − 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
644644 0 0
645645 − 2.62866i − 2.62866i
646646 0 0
647647 0 0 1.00000 00
−1.00000 π\pi
648648 0 0
649649 0 0
650650 0 0
651651 − 0.726543i − 0.726543i
652652 0 0
653653 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
654654 0 0
655655 0 0
656656 0 0
657657 0.618034 0.618034
658658 0 0
659659 − 1.90211i − 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
660660 0 0
661661 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 1.00000 00
−1.00000 π\pi
674674 0 0
675675 − 1.90211i − 1.90211i
676676 0 0
677677 0 0 1.00000 00
−1.00000 π\pi
678678 0 0
679679 −0.618034 −0.618034
680680 0 0
681681 −2.23607 −2.23607
682682 0 0
683683 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
684684 0 0
685685 3.07768i 3.07768i
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 − 1.17557i − 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
692692 0 0
693693 0 0
694694 0 0
695695 3.61803 3.61803
696696 0 0
697697 1.61803 1.61803
698698 0 0
699699 0 0
700700 0 0
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 1.90211i 1.90211i
718718 0 0
719719 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
720720 0 0
721721 0 0
722722 0 0
723723 0.726543i 0.726543i
724724 0 0
725725 0 0
726726 0 0
727727 0 0 1.00000 00
−1.00000 π\pi
728728 0 0
729729 −0.381966 −0.381966
730730 0 0
731731 1.17557i 1.17557i
732732 0 0
733733 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
734734 0 0
735735 −2.23607 −2.23607
736736 0 0
737737 0 0
738738 0 0
739739 1.17557i 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000 00
−1.00000 π\pi
744744 0 0
745745 2.23607 2.23607
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 1.00000 00
−1.00000 π\pi
752752 0 0
753753 0 0
754754 0 0
755755 − 3.07768i − 3.07768i
756756 0 0
757757 1.17557i 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0 0
763763 0 0
764764 0 0
765765 − 0.726543i − 0.726543i
766766 0 0
767767 0 0
768768 0 0
769769 0 0 1.00000 00
−1.00000 π\pi
770770 0 0
771771 0 0
772772 0 0
773773 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
774774 0 0
775775 1.61803 1.61803
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 0 0 1.00000 00
−1.00000 π\pi
788788 0 0
789789 − 2.35114i − 2.35114i
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 4.25325i 4.25325i
796796 0 0
797797 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 1.00000 00
−1.00000 π\pi
810810 0 0
811811 1.17557i 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
822822 0 0
823823 0 0 1.00000 00
−1.00000 π\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
828828 0 0
829829 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
830830 0 0
831831 0 0
832832 0 0
833833 1.00000 1.00000
834834 0 0
835835 3.07768i 3.07768i
836836 0 0
837837 − 0.449028i − 0.449028i
838838 0 0
839839 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
840840 0 0
841841 −1.00000 −1.00000
842842 0 0
843843 − 0.726543i − 0.726543i
844844 0 0
845845 − 1.90211i − 1.90211i
846846 0 0
847847 −1.00000 −1.00000
848848 0 0
849849 −2.23607 −2.23607
850850 0 0
851851 0 0
852852 0 0
853853 0 0 1.00000 00
−1.00000 π\pi
854854 0 0
855855 0 0
856856 0 0
857857 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
858858 0 0
859859 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
860860 0 0
861861 1.90211i 1.90211i
862862 0 0
863863 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
864864 0 0
865865 −2.23607 −2.23607
866866 0 0
867867 1.17557i 1.17557i
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0.236068 0.236068
874874 0 0
875875 − 3.07768i − 3.07768i
876876 0 0
877877 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
878878 0 0
879879 0 0
880880 0 0
881881 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
882882 0 0
883883 1.90211i 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
884884 0 0
885885 0 0
886886 0 0
887887 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
888888 0 0
889889 0.618034 0.618034
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 2.23607 2.23607
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 − 1.90211i − 1.90211i
902902 0 0
903903 −1.38197 −1.38197
904904 0 0
905905 0 0
906906 0 0
907907 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 0 0
913913 0 0
914914 0 0
915915 2.62866i 2.62866i
916916 0 0
917917 0 0
918918 0 0
919919 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
930930 0 0
931931 0 0
932932 0 0
933933 0.726543i 0.726543i
934934 0 0
935935 0 0
936936 0 0
937937 0 0 1.00000 00
−1.00000 π\pi
938938 0 0
939939 − 0.726543i − 0.726543i
940940 0 0
941941 1.17557i 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
942942 0 0
943943 0 0
944944 0 0
945945 −1.38197 −1.38197
946946 0 0
947947 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
954954 0 0
955955 1.17557i 1.17557i
956956 0 0
957957 0 0
958958 0 0
959959 1.61803 1.61803
960960 0 0
961961 −0.618034 −0.618034
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
968968 0 0
969969 0 0
970970 0 0
971971 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
972972 0 0
973973 − 1.90211i − 1.90211i
974974 0 0
975975 0 0
976976 0 0
977977 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 0 0
983983 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 0 0
993993 2.23607 2.23607
994994 0 0
995995 − 3.07768i − 3.07768i
996996 0 0
997997 − 1.17557i − 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3808.1.e.d.3569.3 4
4.3 odd 2 952.1.e.d.237.4 yes 4
7.6 odd 2 3808.1.e.c.3569.2 4
8.3 odd 2 952.1.e.d.237.3 yes 4
8.5 even 2 inner 3808.1.e.d.3569.2 4
17.16 even 2 3808.1.e.c.3569.2 4
28.27 even 2 952.1.e.c.237.4 yes 4
56.13 odd 2 3808.1.e.c.3569.3 4
56.27 even 2 952.1.e.c.237.3 4
68.67 odd 2 952.1.e.c.237.4 yes 4
119.118 odd 2 CM 3808.1.e.d.3569.3 4
136.67 odd 2 952.1.e.c.237.3 4
136.101 even 2 3808.1.e.c.3569.3 4
476.475 even 2 952.1.e.d.237.4 yes 4
952.237 odd 2 inner 3808.1.e.d.3569.2 4
952.475 even 2 952.1.e.d.237.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
952.1.e.c.237.3 4 56.27 even 2
952.1.e.c.237.3 4 136.67 odd 2
952.1.e.c.237.4 yes 4 28.27 even 2
952.1.e.c.237.4 yes 4 68.67 odd 2
952.1.e.d.237.3 yes 4 8.3 odd 2
952.1.e.d.237.3 yes 4 952.475 even 2
952.1.e.d.237.4 yes 4 4.3 odd 2
952.1.e.d.237.4 yes 4 476.475 even 2
3808.1.e.c.3569.2 4 7.6 odd 2
3808.1.e.c.3569.2 4 17.16 even 2
3808.1.e.c.3569.3 4 56.13 odd 2
3808.1.e.c.3569.3 4 136.101 even 2
3808.1.e.d.3569.2 4 8.5 even 2 inner
3808.1.e.d.3569.2 4 952.237 odd 2 inner
3808.1.e.d.3569.3 4 1.1 even 1 trivial
3808.1.e.d.3569.3 4 119.118 odd 2 CM