Properties

Label 952.1.e.c.237.3
Level 952952
Weight 11
Character 952.237
Analytic conductor 0.4750.475
Analytic rank 00
Dimension 44
Projective image D10D_{10}
CM discriminant -119
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [952,1,Mod(237,952)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(952, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("952.237");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 952=23717 952 = 2^{3} \cdot 7 \cdot 17
Weight: k k == 1 1
Character orbit: [χ][\chi] == 952.e (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.4751098920270.475109892027
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ10)\Q(\zeta_{10})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3+x2x+1 x^{4} - x^{3} + x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D10D_{10}
Projective field: Galois closure of 10.2.6571095523328.1

Embedding invariants

Embedding label 237.3
Root 0.8090170.587785i0.809017 - 0.587785i of defining polynomial
Character χ\chi == 952.237
Dual form 952.1.e.c.237.4

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.8090170.587785i)q21.17557iq3+(0.3090170.951057i)q4+1.90211iq5+(0.6909830.951057i)q6+1.00000q7+(0.3090170.951057i)q80.381966q9+(1.11803+1.53884i)q10+(1.118030.363271i)q12+(0.8090170.587785i)q14+2.23607q15+(0.8090170.587785i)q161.00000q17+(0.309017+0.224514i)q18+(1.80902+0.587785i)q201.17557iq21+(1.11803+0.363271i)q242.61803q250.726543iq27+(0.3090170.951057i)q28+(1.809021.31433i)q300.618034q311.00000q32+(0.809017+0.587785i)q34+1.90211iq35+(0.118034+0.363271i)q36+(1.809020.587785i)q401.61803q41+(0.6909830.951057i)q42+1.17557iq430.726543iq45+(0.690983+0.951057i)q48+1.00000q49+(2.11803+1.53884i)q50+1.17557iq51+1.90211iq53+(0.4270510.587785i)q54+(0.3090170.951057i)q56+(0.6909832.12663i)q601.17557iq61+(0.500000+0.363271i)q620.381966q63+(0.809017+0.587785i)q641.90211iq67+(0.309017+0.951057i)q68+(1.11803+1.53884i)q70+(0.118034+0.363271i)q72+1.61803q73+3.07768iq75+(1.118031.53884i)q801.23607q81+(1.30902+0.951057i)q82+(1.118030.363271i)q841.90211iq85+(0.690983+0.951057i)q86+(0.4270510.587785i)q90+0.726543iq93+1.17557iq96+0.618034q97+(0.8090170.587785i)q98+O(q100)q+(0.809017 - 0.587785i) q^{2} -1.17557i q^{3} +(0.309017 - 0.951057i) q^{4} +1.90211i q^{5} +(-0.690983 - 0.951057i) q^{6} +1.00000 q^{7} +(-0.309017 - 0.951057i) q^{8} -0.381966 q^{9} +(1.11803 + 1.53884i) q^{10} +(-1.11803 - 0.363271i) q^{12} +(0.809017 - 0.587785i) q^{14} +2.23607 q^{15} +(-0.809017 - 0.587785i) q^{16} -1.00000 q^{17} +(-0.309017 + 0.224514i) q^{18} +(1.80902 + 0.587785i) q^{20} -1.17557i q^{21} +(-1.11803 + 0.363271i) q^{24} -2.61803 q^{25} -0.726543i q^{27} +(0.309017 - 0.951057i) q^{28} +(1.80902 - 1.31433i) q^{30} -0.618034 q^{31} -1.00000 q^{32} +(-0.809017 + 0.587785i) q^{34} +1.90211i q^{35} +(-0.118034 + 0.363271i) q^{36} +(1.80902 - 0.587785i) q^{40} -1.61803 q^{41} +(-0.690983 - 0.951057i) q^{42} +1.17557i q^{43} -0.726543i q^{45} +(-0.690983 + 0.951057i) q^{48} +1.00000 q^{49} +(-2.11803 + 1.53884i) q^{50} +1.17557i q^{51} +1.90211i q^{53} +(-0.427051 - 0.587785i) q^{54} +(-0.309017 - 0.951057i) q^{56} +(0.690983 - 2.12663i) q^{60} -1.17557i q^{61} +(-0.500000 + 0.363271i) q^{62} -0.381966 q^{63} +(-0.809017 + 0.587785i) q^{64} -1.90211i q^{67} +(-0.309017 + 0.951057i) q^{68} +(1.11803 + 1.53884i) q^{70} +(0.118034 + 0.363271i) q^{72} +1.61803 q^{73} +3.07768i q^{75} +(1.11803 - 1.53884i) q^{80} -1.23607 q^{81} +(-1.30902 + 0.951057i) q^{82} +(-1.11803 - 0.363271i) q^{84} -1.90211i q^{85} +(0.690983 + 0.951057i) q^{86} +(-0.427051 - 0.587785i) q^{90} +0.726543i q^{93} +1.17557i q^{96} +0.618034 q^{97} +(0.809017 - 0.587785i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+q2q45q6+4q7+q86q9+q14q164q17+q18+5q206q25q28+5q30+2q314q32q34+4q36+5q402q41++q98+O(q100) 4 q + q^{2} - q^{4} - 5 q^{6} + 4 q^{7} + q^{8} - 6 q^{9} + q^{14} - q^{16} - 4 q^{17} + q^{18} + 5 q^{20} - 6 q^{25} - q^{28} + 5 q^{30} + 2 q^{31} - 4 q^{32} - q^{34} + 4 q^{36} + 5 q^{40} - 2 q^{41}+ \cdots + q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/952Z)×\left(\mathbb{Z}/952\mathbb{Z}\right)^\times.

nn 239239 409409 477477 785785
χ(n)\chi(n) 11 1-1 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.809017 0.587785i 0.809017 0.587785i
33 1.17557i 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
44 0.309017 0.951057i 0.309017 0.951057i
55 1.90211i 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
66 −0.690983 0.951057i −0.690983 0.951057i
77 1.00000 1.00000
88 −0.309017 0.951057i −0.309017 0.951057i
99 −0.381966 −0.381966
1010 1.11803 + 1.53884i 1.11803 + 1.53884i
1111 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1212 −1.11803 0.363271i −1.11803 0.363271i
1313 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1414 0.809017 0.587785i 0.809017 0.587785i
1515 2.23607 2.23607
1616 −0.809017 0.587785i −0.809017 0.587785i
1717 −1.00000 −1.00000
1818 −0.309017 + 0.224514i −0.309017 + 0.224514i
1919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2020 1.80902 + 0.587785i 1.80902 + 0.587785i
2121 1.17557i 1.17557i
2222 0 0
2323 0 0 1.00000 00
−1.00000 π\pi
2424 −1.11803 + 0.363271i −1.11803 + 0.363271i
2525 −2.61803 −2.61803
2626 0 0
2727 0.726543i 0.726543i
2828 0.309017 0.951057i 0.309017 0.951057i
2929 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3030 1.80902 1.31433i 1.80902 1.31433i
3131 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
3232 −1.00000 −1.00000
3333 0 0
3434 −0.809017 + 0.587785i −0.809017 + 0.587785i
3535 1.90211i 1.90211i
3636 −0.118034 + 0.363271i −0.118034 + 0.363271i
3737 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3838 0 0
3939 0 0
4040 1.80902 0.587785i 1.80902 0.587785i
4141 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
4242 −0.690983 0.951057i −0.690983 0.951057i
4343 1.17557i 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
4444 0 0
4545 0.726543i 0.726543i
4646 0 0
4747 0 0 1.00000 00
−1.00000 π\pi
4848 −0.690983 + 0.951057i −0.690983 + 0.951057i
4949 1.00000 1.00000
5050 −2.11803 + 1.53884i −2.11803 + 1.53884i
5151 1.17557i 1.17557i
5252 0 0
5353 1.90211i 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
5454 −0.427051 0.587785i −0.427051 0.587785i
5555 0 0
5656 −0.309017 0.951057i −0.309017 0.951057i
5757 0 0
5858 0 0
5959 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
6060 0.690983 2.12663i 0.690983 2.12663i
6161 1.17557i 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
6262 −0.500000 + 0.363271i −0.500000 + 0.363271i
6363 −0.381966 −0.381966
6464 −0.809017 + 0.587785i −0.809017 + 0.587785i
6565 0 0
6666 0 0
6767 1.90211i 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
6868 −0.309017 + 0.951057i −0.309017 + 0.951057i
6969 0 0
7070 1.11803 + 1.53884i 1.11803 + 1.53884i
7171 0 0 1.00000 00
−1.00000 π\pi
7272 0.118034 + 0.363271i 0.118034 + 0.363271i
7373 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
7474 0 0
7575 3.07768i 3.07768i
7676 0 0
7777 0 0
7878 0 0
7979 0 0 1.00000 00
−1.00000 π\pi
8080 1.11803 1.53884i 1.11803 1.53884i
8181 −1.23607 −1.23607
8282 −1.30902 + 0.951057i −1.30902 + 0.951057i
8383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8484 −1.11803 0.363271i −1.11803 0.363271i
8585 1.90211i 1.90211i
8686 0.690983 + 0.951057i 0.690983 + 0.951057i
8787 0 0
8888 0 0
8989 0 0 1.00000 00
−1.00000 π\pi
9090 −0.427051 0.587785i −0.427051 0.587785i
9191 0 0
9292 0 0
9393 0.726543i 0.726543i
9494 0 0
9595 0 0
9696 1.17557i 1.17557i
9797 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
9898 0.809017 0.587785i 0.809017 0.587785i
9999 0 0
100100 −0.809017 + 2.48990i −0.809017 + 2.48990i
101101 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
102102 0.690983 + 0.951057i 0.690983 + 0.951057i
103103 0 0 1.00000 00
−1.00000 π\pi
104104 0 0
105105 2.23607 2.23607
106106 1.11803 + 1.53884i 1.11803 + 1.53884i
107107 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
108108 −0.690983 0.224514i −0.690983 0.224514i
109109 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
110110 0 0
111111 0 0
112112 −0.809017 0.587785i −0.809017 0.587785i
113113 0 0 1.00000 00
−1.00000 π\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 0 0
119119 −1.00000 −1.00000
120120 −0.690983 2.12663i −0.690983 2.12663i
121121 −1.00000 −1.00000
122122 −0.690983 0.951057i −0.690983 0.951057i
123123 1.90211i 1.90211i
124124 −0.190983 + 0.587785i −0.190983 + 0.587785i
125125 3.07768i 3.07768i
126126 −0.309017 + 0.224514i −0.309017 + 0.224514i
127127 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
128128 −0.309017 + 0.951057i −0.309017 + 0.951057i
129129 1.38197 1.38197
130130 0 0
131131 0 0 1.00000 00
−1.00000 π\pi
132132 0 0
133133 0 0
134134 −1.11803 1.53884i −1.11803 1.53884i
135135 1.38197 1.38197
136136 0.309017 + 0.951057i 0.309017 + 0.951057i
137137 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
138138 0 0
139139 1.90211i 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
140140 1.80902 + 0.587785i 1.80902 + 0.587785i
141141 0 0
142142 0 0
143143 0 0
144144 0.309017 + 0.224514i 0.309017 + 0.224514i
145145 0 0
146146 1.30902 0.951057i 1.30902 0.951057i
147147 1.17557i 1.17557i
148148 0 0
149149 1.17557i 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
150150 1.80902 + 2.48990i 1.80902 + 2.48990i
151151 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
152152 0 0
153153 0.381966 0.381966
154154 0 0
155155 1.17557i 1.17557i
156156 0 0
157157 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
158158 0 0
159159 2.23607 2.23607
160160 1.90211i 1.90211i
161161 0 0
162162 −1.00000 + 0.726543i −1.00000 + 0.726543i
163163 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
164164 −0.500000 + 1.53884i −0.500000 + 1.53884i
165165 0 0
166166 0 0
167167 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
168168 −1.11803 + 0.363271i −1.11803 + 0.363271i
169169 −1.00000 −1.00000
170170 −1.11803 1.53884i −1.11803 1.53884i
171171 0 0
172172 1.11803 + 0.363271i 1.11803 + 0.363271i
173173 1.17557i 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
174174 0 0
175175 −2.61803 −2.61803
176176 0 0
177177 0 0
178178 0 0
179179 1.17557i 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
180180 −0.690983 0.224514i −0.690983 0.224514i
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 −1.38197 −1.38197
184184 0 0
185185 0 0
186186 0.427051 + 0.587785i 0.427051 + 0.587785i
187187 0 0
188188 0 0
189189 0.726543i 0.726543i
190190 0 0
191191 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
192192 0.690983 + 0.951057i 0.690983 + 0.951057i
193193 0 0 1.00000 00
−1.00000 π\pi
194194 0.500000 0.363271i 0.500000 0.363271i
195195 0 0
196196 0.309017 0.951057i 0.309017 0.951057i
197197 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
198198 0 0
199199 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
200200 0.809017 + 2.48990i 0.809017 + 2.48990i
201201 −2.23607 −2.23607
202202 0 0
203203 0 0
204204 1.11803 + 0.363271i 1.11803 + 0.363271i
205205 3.07768i 3.07768i
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 1.80902 1.31433i 1.80902 1.31433i
211211 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
212212 1.80902 + 0.587785i 1.80902 + 0.587785i
213213 0 0
214214 0 0
215215 −2.23607 −2.23607
216216 −0.690983 + 0.224514i −0.690983 + 0.224514i
217217 −0.618034 −0.618034
218218 0 0
219219 1.90211i 1.90211i
220220 0 0
221221 0 0
222222 0 0
223223 0 0 1.00000 00
−1.00000 π\pi
224224 −1.00000 −1.00000
225225 1.00000 1.00000
226226 0 0
227227 1.90211i 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
228228 0 0
229229 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 1.00000 00
−1.00000 π\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 −0.809017 + 0.587785i −0.809017 + 0.587785i
239239 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
240240 −1.80902 1.31433i −1.80902 1.31433i
241241 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
242242 −0.809017 + 0.587785i −0.809017 + 0.587785i
243243 0.726543i 0.726543i
244244 −1.11803 0.363271i −1.11803 0.363271i
245245 1.90211i 1.90211i
246246 1.11803 + 1.53884i 1.11803 + 1.53884i
247247 0 0
248248 0.190983 + 0.587785i 0.190983 + 0.587785i
249249 0 0
250250 −1.80902 2.48990i −1.80902 2.48990i
251251 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
252252 −0.118034 + 0.363271i −0.118034 + 0.363271i
253253 0 0
254254 −0.500000 + 0.363271i −0.500000 + 0.363271i
255255 −2.23607 −2.23607
256256 0.309017 + 0.951057i 0.309017 + 0.951057i
257257 0 0 1.00000 00
−1.00000 π\pi
258258 1.11803 0.812299i 1.11803 0.812299i
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 2.00000 2.00000 1.00000 00
1.00000 00
264264 0 0
265265 −3.61803 −3.61803
266266 0 0
267267 0 0
268268 −1.80902 0.587785i −1.80902 0.587785i
269269 0 0 1.00000 00
−1.00000 π\pi
270270 1.11803 0.812299i 1.11803 0.812299i
271271 0 0 1.00000 00
−1.00000 π\pi
272272 0.809017 + 0.587785i 0.809017 + 0.587785i
273273 0 0
274274 1.30902 0.951057i 1.30902 0.951057i
275275 0 0
276276 0 0
277277 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
278278 1.11803 + 1.53884i 1.11803 + 1.53884i
279279 0.236068 0.236068
280280 1.80902 0.587785i 1.80902 0.587785i
281281 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
282282 0 0
283283 1.90211i 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
284284 0 0
285285 0 0
286286 0 0
287287 −1.61803 −1.61803
288288 0.381966 0.381966
289289 1.00000 1.00000
290290 0 0
291291 0.726543i 0.726543i
292292 0.500000 1.53884i 0.500000 1.53884i
293293 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
294294 −0.690983 0.951057i −0.690983 0.951057i
295295 0 0
296296 0 0
297297 0 0
298298 0.690983 + 0.951057i 0.690983 + 0.951057i
299299 0 0
300300 2.92705 + 0.951057i 2.92705 + 0.951057i
301301 1.17557i 1.17557i
302302 1.30902 0.951057i 1.30902 0.951057i
303303 0 0
304304 0 0
305305 2.23607 2.23607
306306 0.309017 0.224514i 0.309017 0.224514i
307307 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
308308 0 0
309309 0 0
310310 −0.690983 0.951057i −0.690983 0.951057i
311311 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
312312 0 0
313313 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
314314 0 0
315315 0.726543i 0.726543i
316316 0 0
317317 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
318318 1.80902 1.31433i 1.80902 1.31433i
319319 0 0
320320 −1.11803 1.53884i −1.11803 1.53884i
321321 0 0
322322 0 0
323323 0 0
324324 −0.381966 + 1.17557i −0.381966 + 1.17557i
325325 0 0
326326 0 0
327327 0 0
328328 0.500000 + 1.53884i 0.500000 + 1.53884i
329329 0 0
330330 0 0
331331 1.90211i 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
332332 0 0
333333 0 0
334334 1.30902 0.951057i 1.30902 0.951057i
335335 3.61803 3.61803
336336 −0.690983 + 0.951057i −0.690983 + 0.951057i
337337 0 0 1.00000 00
−1.00000 π\pi
338338 −0.809017 + 0.587785i −0.809017 + 0.587785i
339339 0 0
340340 −1.80902 0.587785i −1.80902 0.587785i
341341 0 0
342342 0 0
343343 1.00000 1.00000
344344 1.11803 0.363271i 1.11803 0.363271i
345345 0 0
346346 0.690983 + 0.951057i 0.690983 + 0.951057i
347347 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
348348 0 0
349349 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
350350 −2.11803 + 1.53884i −2.11803 + 1.53884i
351351 0 0
352352 0 0
353353 0 0 1.00000 00
−1.00000 π\pi
354354 0 0
355355 0 0
356356 0 0
357357 1.17557i 1.17557i
358358 −0.690983 0.951057i −0.690983 0.951057i
359359 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
360360 −0.690983 + 0.224514i −0.690983 + 0.224514i
361361 −1.00000 −1.00000
362362 0 0
363363 1.17557i 1.17557i
364364 0 0
365365 3.07768i 3.07768i
366366 −1.11803 + 0.812299i −1.11803 + 0.812299i
367367 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
368368 0 0
369369 0.618034 0.618034
370370 0 0
371371 1.90211i 1.90211i
372372 0.690983 + 0.224514i 0.690983 + 0.224514i
373373 1.17557i 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
374374 0 0
375375 −3.61803 −3.61803
376376 0 0
377377 0 0
378378 −0.427051 0.587785i −0.427051 0.587785i
379379 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
380380 0 0
381381 0.726543i 0.726543i
382382 −0.500000 + 0.363271i −0.500000 + 0.363271i
383383 0 0 1.00000 00
−1.00000 π\pi
384384 1.11803 + 0.363271i 1.11803 + 0.363271i
385385 0 0
386386 0 0
387387 0.449028i 0.449028i
388388 0.190983 0.587785i 0.190983 0.587785i
389389 1.90211i 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
390390 0 0
391391 0 0
392392 −0.309017 0.951057i −0.309017 0.951057i
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 1.90211i 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
398398 −1.30902 + 0.951057i −1.30902 + 0.951057i
399399 0 0
400400 2.11803 + 1.53884i 2.11803 + 1.53884i
401401 0 0 1.00000 00
−1.00000 π\pi
402402 −1.80902 + 1.31433i −1.80902 + 1.31433i
403403 0 0
404404 0 0
405405 2.35114i 2.35114i
406406 0 0
407407 0 0
408408 1.11803 0.363271i 1.11803 0.363271i
409409 0 0 1.00000 00
−1.00000 π\pi
410410 −1.80902 2.48990i −1.80902 2.48990i
411411 1.90211i 1.90211i
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 2.23607 2.23607
418418 0 0
419419 1.90211i 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
420420 0.690983 2.12663i 0.690983 2.12663i
421421 1.17557i 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
422422 0 0
423423 0 0
424424 1.80902 0.587785i 1.80902 0.587785i
425425 2.61803 2.61803
426426 0 0
427427 1.17557i 1.17557i
428428 0 0
429429 0 0
430430 −1.80902 + 1.31433i −1.80902 + 1.31433i
431431 0 0 1.00000 00
−1.00000 π\pi
432432 −0.427051 + 0.587785i −0.427051 + 0.587785i
433433 0 0 1.00000 00
−1.00000 π\pi
434434 −0.500000 + 0.363271i −0.500000 + 0.363271i
435435 0 0
436436 0 0
437437 0 0
438438 −1.11803 1.53884i −1.11803 1.53884i
439439 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
440440 0 0
441441 −0.381966 −0.381966
442442 0 0
443443 0 0 1.00000 00
−1.00000 π\pi
444444 0 0
445445 0 0
446446 0 0
447447 1.38197 1.38197
448448 −0.809017 + 0.587785i −0.809017 + 0.587785i
449449 0 0 1.00000 00
−1.00000 π\pi
450450 0.809017 0.587785i 0.809017 0.587785i
451451 0 0
452452 0 0
453453 1.90211i 1.90211i
454454 −1.11803 1.53884i −1.11803 1.53884i
455455 0 0
456456 0 0
457457 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
458458 0 0
459459 0.726543i 0.726543i
460460 0 0
461461 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
462462 0 0
463463 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
464464 0 0
465465 −1.38197 −1.38197
466466 0 0
467467 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
468468 0 0
469469 1.90211i 1.90211i
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 −0.309017 + 0.951057i −0.309017 + 0.951057i
477477 0.726543i 0.726543i
478478 −1.30902 + 0.951057i −1.30902 + 0.951057i
479479 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
480480 −2.23607 −2.23607
481481 0 0
482482 −0.500000 + 0.363271i −0.500000 + 0.363271i
483483 0 0
484484 −0.309017 + 0.951057i −0.309017 + 0.951057i
485485 1.17557i 1.17557i
486486 0.427051 + 0.587785i 0.427051 + 0.587785i
487487 0 0 1.00000 00
−1.00000 π\pi
488488 −1.11803 + 0.363271i −1.11803 + 0.363271i
489489 0 0
490490 1.11803 + 1.53884i 1.11803 + 1.53884i
491491 1.90211i 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
492492 1.80902 + 0.587785i 1.80902 + 0.587785i
493493 0 0
494494 0 0
495495 0 0
496496 0.500000 + 0.363271i 0.500000 + 0.363271i
497497 0 0
498498 0 0
499499 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
500500 −2.92705 0.951057i −2.92705 0.951057i
501501 1.90211i 1.90211i
502502 0 0
503503 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
504504 0.118034 + 0.363271i 0.118034 + 0.363271i
505505 0 0
506506 0 0
507507 1.17557i 1.17557i
508508 −0.190983 + 0.587785i −0.190983 + 0.587785i
509509 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
510510 −1.80902 + 1.31433i −1.80902 + 1.31433i
511511 1.61803 1.61803
512512 0.809017 + 0.587785i 0.809017 + 0.587785i
513513 0 0
514514 0 0
515515 0 0
516516 0.427051 1.31433i 0.427051 1.31433i
517517 0 0
518518 0 0
519519 1.38197 1.38197
520520 0 0
521521 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
522522 0 0
523523 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
524524 0 0
525525 3.07768i 3.07768i
526526 1.61803 1.17557i 1.61803 1.17557i
527527 0.618034 0.618034
528528 0 0
529529 1.00000 1.00000
530530 −2.92705 + 2.12663i −2.92705 + 2.12663i
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 −1.80902 + 0.587785i −1.80902 + 0.587785i
537537 −1.38197 −1.38197
538538 0 0
539539 0 0
540540 0.427051 1.31433i 0.427051 1.31433i
541541 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
542542 0 0
543543 0 0
544544 1.00000 1.00000
545545 0 0
546546 0 0
547547 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
548548 0.500000 1.53884i 0.500000 1.53884i
549549 0.449028i 0.449028i
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 1.80902 + 0.587785i 1.80902 + 0.587785i
557557 0 0 1.00000 00
−1.00000 π\pi
558558 0.190983 0.138757i 0.190983 0.138757i
559559 0 0
560560 1.11803 1.53884i 1.11803 1.53884i
561561 0 0
562562 −0.500000 + 0.363271i −0.500000 + 0.363271i
563563 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
564564 0 0
565565 0 0
566566 −1.11803 1.53884i −1.11803 1.53884i
567567 −1.23607 −1.23607
568568 0 0
569569 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
570570 0 0
571571 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
572572 0 0
573573 0.726543i 0.726543i
574574 −1.30902 + 0.951057i −1.30902 + 0.951057i
575575 0 0
576576 0.309017 0.224514i 0.309017 0.224514i
577577 0 0 1.00000 00
−1.00000 π\pi
578578 0.809017 0.587785i 0.809017 0.587785i
579579 0 0
580580 0 0
581581 0 0
582582 −0.427051 0.587785i −0.427051 0.587785i
583583 0 0
584584 −0.500000 1.53884i −0.500000 1.53884i
585585 0 0
586586 0 0
587587 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
588588 −1.11803 0.363271i −1.11803 0.363271i
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0 0 1.00000 00
−1.00000 π\pi
594594 0 0
595595 1.90211i 1.90211i
596596 1.11803 + 0.363271i 1.11803 + 0.363271i
597597 1.90211i 1.90211i
598598 0 0
599599 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
600600 2.92705 0.951057i 2.92705 0.951057i
601601 2.00000 2.00000 1.00000 00
1.00000 00
602602 0.690983 + 0.951057i 0.690983 + 0.951057i
603603 0.726543i 0.726543i
604604 0.500000 1.53884i 0.500000 1.53884i
605605 1.90211i 1.90211i
606606 0 0
607607 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
608608 0 0
609609 0 0
610610 1.80902 1.31433i 1.80902 1.31433i
611611 0 0
612612 0.118034 0.363271i 0.118034 0.363271i
613613 1.90211i 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
614614 0 0
615615 −3.61803 −3.61803
616616 0 0
617617 0 0 1.00000 00
−1.00000 π\pi
618618 0 0
619619 0 0 1.00000 00
−1.00000 π\pi
620620 −1.11803 0.363271i −1.11803 0.363271i
621621 0 0
622622 0.500000 0.363271i 0.500000 0.363271i
623623 0 0
624624 0 0
625625 3.23607 3.23607
626626 0.500000 0.363271i 0.500000 0.363271i
627627 0 0
628628 0 0
629629 0 0
630630 −0.427051 0.587785i −0.427051 0.587785i
631631 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
632632 0 0
633633 0 0
634634 0 0
635635 1.17557i 1.17557i
636636 0.690983 2.12663i 0.690983 2.12663i
637637 0 0
638638 0 0
639639 0 0
640640 −1.80902 0.587785i −1.80902 0.587785i
641641 0 0 1.00000 00
−1.00000 π\pi
642642 0 0
643643 1.17557i 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
644644 0 0
645645 2.62866i 2.62866i
646646 0 0
647647 0 0 1.00000 00
−1.00000 π\pi
648648 0.381966 + 1.17557i 0.381966 + 1.17557i
649649 0 0
650650 0 0
651651 0.726543i 0.726543i
652652 0 0
653653 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
654654 0 0
655655 0 0
656656 1.30902 + 0.951057i 1.30902 + 0.951057i
657657 −0.618034 −0.618034
658658 0 0
659659 1.90211i 1.90211i −0.309017 0.951057i 0.600000π-0.600000\pi
0.309017 0.951057i 0.400000π-0.400000\pi
660660 0 0
661661 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
662662 −1.11803 1.53884i −1.11803 1.53884i
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0.500000 1.53884i 0.500000 1.53884i
669669 0 0
670670 2.92705 2.12663i 2.92705 2.12663i
671671 0 0
672672 1.17557i 1.17557i
673673 0 0 1.00000 00
−1.00000 π\pi
674674 0 0
675675 1.90211i 1.90211i
676676 −0.309017 + 0.951057i −0.309017 + 0.951057i
677677 0 0 1.00000 00
−1.00000 π\pi
678678 0 0
679679 0.618034 0.618034
680680 −1.80902 + 0.587785i −1.80902 + 0.587785i
681681 −2.23607 −2.23607
682682 0 0
683683 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
684684 0 0
685685 3.07768i 3.07768i
686686 0.809017 0.587785i 0.809017 0.587785i
687687 0 0
688688 0.690983 0.951057i 0.690983 0.951057i
689689 0 0
690690 0 0
691691 1.17557i 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
692692 1.11803 + 0.363271i 1.11803 + 0.363271i
693693 0 0
694694 0 0
695695 −3.61803 −3.61803
696696 0 0
697697 1.61803 1.61803
698698 0 0
699699 0 0
700700 −0.809017 + 2.48990i −0.809017 + 2.48990i
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0.690983 + 0.951057i 0.690983 + 0.951057i
715715 0 0
716716 −1.11803 0.363271i −1.11803 0.363271i
717717 1.90211i 1.90211i
718718 0.500000 0.363271i 0.500000 0.363271i
719719 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
720720 −0.427051 + 0.587785i −0.427051 + 0.587785i
721721 0 0
722722 −0.809017 + 0.587785i −0.809017 + 0.587785i
723723 0.726543i 0.726543i
724724 0 0
725725 0 0
726726 0.690983 + 0.951057i 0.690983 + 0.951057i
727727 0 0 1.00000 00
−1.00000 π\pi
728728 0 0
729729 −0.381966 −0.381966
730730 1.80902 + 2.48990i 1.80902 + 2.48990i
731731 1.17557i 1.17557i
732732 −0.427051 + 1.31433i −0.427051 + 1.31433i
733733 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
734734 1.30902 0.951057i 1.30902 0.951057i
735735 2.23607 2.23607
736736 0 0
737737 0 0
738738 0.500000 0.363271i 0.500000 0.363271i
739739 1.17557i 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
740740 0 0
741741 0 0
742742 1.11803 + 1.53884i 1.11803 + 1.53884i
743743 0 0 1.00000 00
−1.00000 π\pi
744744 0.690983 0.224514i 0.690983 0.224514i
745745 −2.23607 −2.23607
746746 0.690983 + 0.951057i 0.690983 + 0.951057i
747747 0 0
748748 0 0
749749 0 0
750750 −2.92705 + 2.12663i −2.92705 + 2.12663i
751751 0 0 1.00000 00
−1.00000 π\pi
752752 0 0
753753 0 0
754754 0 0
755755 3.07768i 3.07768i
756756 −0.690983 0.224514i −0.690983 0.224514i
757757 1.17557i 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0.427051 + 0.587785i 0.427051 + 0.587785i
763763 0 0
764764 −0.190983 + 0.587785i −0.190983 + 0.587785i
765765 0.726543i 0.726543i
766766 0 0
767767 0 0
768768 1.11803 0.363271i 1.11803 0.363271i
769769 0 0 1.00000 00
−1.00000 π\pi
770770 0 0
771771 0 0
772772 0 0
773773 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
774774 −0.263932 0.363271i −0.263932 0.363271i
775775 1.61803 1.61803
776776 −0.190983 0.587785i −0.190983 0.587785i
777777 0 0
778778 −1.11803 1.53884i −1.11803 1.53884i
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 −0.809017 0.587785i −0.809017 0.587785i
785785 0 0
786786 0 0
787787 0 0 1.00000 00
−1.00000 π\pi
788788 0 0
789789 2.35114i 2.35114i
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 1.11803 + 1.53884i 1.11803 + 1.53884i
795795 4.25325i 4.25325i
796796 −0.500000 + 1.53884i −0.500000 + 1.53884i
797797 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
798798 0 0
799799 0 0
800800 2.61803 2.61803
801801 0 0
802802 0 0
803803 0 0
804804 −0.690983 + 2.12663i −0.690983 + 2.12663i
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 1.00000 00
−1.00000 π\pi
810810 −1.38197 1.90211i −1.38197 1.90211i
811811 1.17557i 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0.690983 0.951057i 0.690983 0.951057i
817817 0 0
818818 0 0
819819 0 0
820820 −2.92705 0.951057i −2.92705 0.951057i
821821 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
822822 −1.11803 1.53884i −1.11803 1.53884i
823823 0 0 1.00000 00
−1.00000 π\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
828828 0 0
829829 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
830830 0 0
831831 0 0
832832 0 0
833833 −1.00000 −1.00000
834834 1.80902 1.31433i 1.80902 1.31433i
835835 3.07768i 3.07768i
836836 0 0
837837 0.449028i 0.449028i
838838 −1.11803 1.53884i −1.11803 1.53884i
839839 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
840840 −0.690983 2.12663i −0.690983 2.12663i
841841 −1.00000 −1.00000
842842 −0.690983 0.951057i −0.690983 0.951057i
843843 0.726543i 0.726543i
844844 0 0
845845 1.90211i 1.90211i
846846 0 0
847847 −1.00000 −1.00000
848848 1.11803 1.53884i 1.11803 1.53884i
849849 −2.23607 −2.23607
850850 2.11803 1.53884i 2.11803 1.53884i
851851 0 0
852852 0 0
853853 0 0 1.00000 00
−1.00000 π\pi
854854 −0.690983 0.951057i −0.690983 0.951057i
855855 0 0
856856 0 0
857857 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
858858 0 0
859859 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
860860 −0.690983 + 2.12663i −0.690983 + 2.12663i
861861 1.90211i 1.90211i
862862 0 0
863863 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
864864 0.726543i 0.726543i
865865 −2.23607 −2.23607
866866 0 0
867867 1.17557i 1.17557i
868868 −0.190983 + 0.587785i −0.190983 + 0.587785i
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 −0.236068 −0.236068
874874 0 0
875875 3.07768i 3.07768i
876876 −1.80902 0.587785i −1.80902 0.587785i
877877 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
878878 1.30902 0.951057i 1.30902 0.951057i
879879 0 0
880880 0 0
881881 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
882882 −0.309017 + 0.224514i −0.309017 + 0.224514i
883883 1.90211i 1.90211i 0.309017 + 0.951057i 0.400000π0.400000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
884884 0 0
885885 0 0
886886 0 0
887887 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
888888 0 0
889889 −0.618034 −0.618034
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 1.11803 0.812299i 1.11803 0.812299i
895895 2.23607 2.23607
896896 −0.309017 + 0.951057i −0.309017 + 0.951057i
897897 0 0
898898 0 0
899899 0 0
900900 0.309017 0.951057i 0.309017 0.951057i
901901 1.90211i 1.90211i
902902 0 0
903903 1.38197 1.38197
904904 0 0
905905 0 0
906906 −1.11803 1.53884i −1.11803 1.53884i
907907 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
908908 −1.80902 0.587785i −1.80902 0.587785i
909909 0 0
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 0 0
913913 0 0
914914 −0.500000 + 0.363271i −0.500000 + 0.363271i
915915 2.62866i 2.62866i
916916 0 0
917917 0 0
918918 0.427051 + 0.587785i 0.427051 + 0.587785i
919919 1.61803 1.61803 0.809017 0.587785i 0.200000π-0.200000\pi
0.809017 + 0.587785i 0.200000π0.200000\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 −1.30902 + 0.951057i −1.30902 + 0.951057i
927927 0 0
928928 0 0
929929 −0.618034 −0.618034 −0.309017 0.951057i 0.600000π-0.600000\pi
−0.309017 + 0.951057i 0.600000π0.600000\pi
930930 −1.11803 + 0.812299i −1.11803 + 0.812299i
931931 0 0
932932 0 0
933933 0.726543i 0.726543i
934934 0 0
935935 0 0
936936 0 0
937937 0 0 1.00000 00
−1.00000 π\pi
938938 −1.11803 1.53884i −1.11803 1.53884i
939939 0.726543i 0.726543i
940940 0 0
941941 1.17557i 1.17557i 0.809017 + 0.587785i 0.200000π0.200000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
942942 0 0
943943 0 0
944944 0 0
945945 1.38197 1.38197
946946 0 0
947947 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0.309017 + 0.951057i 0.309017 + 0.951057i
953953 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
954954 −0.427051 0.587785i −0.427051 0.587785i
955955 1.17557i 1.17557i
956956 −0.500000 + 1.53884i −0.500000 + 1.53884i
957957 0 0
958958 −1.30902 + 0.951057i −1.30902 + 0.951057i
959959 1.61803 1.61803
960960 −1.80902 + 1.31433i −1.80902 + 1.31433i
961961 −0.618034 −0.618034
962962 0 0
963963 0 0
964964 −0.190983 + 0.587785i −0.190983 + 0.587785i
965965 0 0
966966 0 0
967967 −1.61803 −1.61803 −0.809017 0.587785i 0.800000π-0.800000\pi
−0.809017 + 0.587785i 0.800000π0.800000\pi
968968 0.309017 + 0.951057i 0.309017 + 0.951057i
969969 0 0
970970 0.690983 + 0.951057i 0.690983 + 0.951057i
971971 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
972972 0.690983 + 0.224514i 0.690983 + 0.224514i
973973 1.90211i 1.90211i
974974 0 0
975975 0 0
976976 −0.690983 + 0.951057i −0.690983 + 0.951057i
977977 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
978978 0 0
979979 0 0
980980 1.80902 + 0.587785i 1.80902 + 0.587785i
981981 0 0
982982 1.11803 + 1.53884i 1.11803 + 1.53884i
983983 0.618034 0.618034 0.309017 0.951057i 0.400000π-0.400000\pi
0.309017 + 0.951057i 0.400000π0.400000\pi
984984 1.80902 0.587785i 1.80902 0.587785i
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 0.618034 0.618034
993993 −2.23607 −2.23607
994994 0 0
995995 3.07768i 3.07768i
996996 0 0
997997 1.17557i 1.17557i −0.809017 0.587785i 0.800000π-0.800000\pi
0.809017 0.587785i 0.200000π-0.200000\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 952.1.e.c.237.3 4
4.3 odd 2 3808.1.e.c.3569.3 4
7.6 odd 2 952.1.e.d.237.3 yes 4
8.3 odd 2 3808.1.e.c.3569.2 4
8.5 even 2 inner 952.1.e.c.237.4 yes 4
17.16 even 2 952.1.e.d.237.3 yes 4
28.27 even 2 3808.1.e.d.3569.2 4
56.13 odd 2 952.1.e.d.237.4 yes 4
56.27 even 2 3808.1.e.d.3569.3 4
68.67 odd 2 3808.1.e.d.3569.2 4
119.118 odd 2 CM 952.1.e.c.237.3 4
136.67 odd 2 3808.1.e.d.3569.3 4
136.101 even 2 952.1.e.d.237.4 yes 4
476.475 even 2 3808.1.e.c.3569.3 4
952.237 odd 2 inner 952.1.e.c.237.4 yes 4
952.475 even 2 3808.1.e.c.3569.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
952.1.e.c.237.3 4 1.1 even 1 trivial
952.1.e.c.237.3 4 119.118 odd 2 CM
952.1.e.c.237.4 yes 4 8.5 even 2 inner
952.1.e.c.237.4 yes 4 952.237 odd 2 inner
952.1.e.d.237.3 yes 4 7.6 odd 2
952.1.e.d.237.3 yes 4 17.16 even 2
952.1.e.d.237.4 yes 4 56.13 odd 2
952.1.e.d.237.4 yes 4 136.101 even 2
3808.1.e.c.3569.2 4 8.3 odd 2
3808.1.e.c.3569.2 4 952.475 even 2
3808.1.e.c.3569.3 4 4.3 odd 2
3808.1.e.c.3569.3 4 476.475 even 2
3808.1.e.d.3569.2 4 28.27 even 2
3808.1.e.d.3569.2 4 68.67 odd 2
3808.1.e.d.3569.3 4 56.27 even 2
3808.1.e.d.3569.3 4 136.67 odd 2