L(s) = 1 | + 4·3-s − 4·5-s − 6·7-s + 3·9-s + 8·11-s − 4·13-s − 16·15-s + 6·17-s + 18·19-s − 24·21-s + 6·23-s − 25-s − 10·27-s + 4·29-s − 8·31-s + 32·33-s + 24·35-s − 8·37-s − 16·39-s − 4·41-s + 20·43-s − 12·45-s + 6·47-s + 21·49-s + 24·51-s + 14·53-s − 32·55-s + ⋯ |
L(s) = 1 | + 2.30·3-s − 1.78·5-s − 2.26·7-s + 9-s + 2.41·11-s − 1.10·13-s − 4.13·15-s + 1.45·17-s + 4.12·19-s − 5.23·21-s + 1.25·23-s − 1/5·25-s − 1.92·27-s + 0.742·29-s − 1.43·31-s + 5.57·33-s + 4.05·35-s − 1.31·37-s − 2.56·39-s − 0.624·41-s + 3.04·43-s − 1.78·45-s + 0.875·47-s + 3·49-s + 3.36·51-s + 1.92·53-s − 4.31·55-s + ⋯ |
Λ(s)=(=((230⋅76⋅176)s/2ΓC(s)6L(s)Λ(2−s)
Λ(s)=(=((230⋅76⋅176)s/2ΓC(s+1/2)6L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
22.61816117 |
L(21) |
≈ |
22.61816117 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | (1+T)6 |
| 17 | (1−T)6 |
good | 3 | 1−4T+13T2−10pT3+58T4−32pT5+172T6−32p2T7+58p2T8−10p4T9+13p4T10−4p5T11+p6T12 |
| 5 | 1+4T+17T2+38T3+108T4+36pT5+4p3T6+36p2T7+108p2T8+38p3T9+17p4T10+4p5T11+p6T12 |
| 11 | 1−8T+52T2−20pT3+81pT4−3084T5+10848T6−3084pT7+81p3T8−20p4T9+52p4T10−8p5T11+p6T12 |
| 13 | 1+4T+56T2+200T3+1507T4+4660T5+24584T6+4660pT7+1507p2T8+200p3T9+56p4T10+4p5T11+p6T12 |
| 19 | 1−18T+202T2−1618T3+10435T4−56040T5+261988T6−56040pT7+10435p2T8−1618p3T9+202p4T10−18p5T11+p6T12 |
| 23 | 1−6T+58T2−270T3+2451T4−8744T5+57028T6−8744pT7+2451p2T8−270p3T9+58p4T10−6p5T11+p6T12 |
| 29 | 1−4T+124T2−528T3+7603T4−27764T5+281776T6−27764pT7+7603p2T8−528p3T9+124p4T10−4p5T11+p6T12 |
| 31 | 1+8T+135T2+1006T3+8330T4+55450T5+316652T6+55450pT7+8330p2T8+1006p3T9+135p4T10+8p5T11+p6T12 |
| 37 | 1+8T+118T2+476T3+4883T4+10836T5+160764T6+10836pT7+4883p2T8+476p3T9+118p4T10+8p5T11+p6T12 |
| 41 | 1+4T+149T2+286T3+9140T4+1718T5+386364T6+1718pT7+9140p2T8+286p3T9+149p4T10+4p5T11+p6T12 |
| 43 | 1−20T+397T2−4688T3+51994T4−419784T5+3162376T6−419784pT7+51994p2T8−4688p3T9+397p4T10−20p5T11+p6T12 |
| 47 | 1−6T+176T2−866T3+14819T4−63532T5+827864T6−63532pT7+14819p2T8−866p3T9+176p4T10−6p5T11+p6T12 |
| 53 | 1−14T+261T2−2956T3+32512T4−277990T5+2263724T6−277990pT7+32512p2T8−2956p3T9+261p4T10−14p5T11+p6T12 |
| 59 | 1−20T+366T2−4204T3+47463T4−408168T5+3531140T6−408168pT7+47463p2T8−4204p3T9+366p4T10−20p5T11+p6T12 |
| 61 | 1−2T+269T2−562T3+34032T4−63610T5+2601044T6−63610pT7+34032p2T8−562p3T9+269p4T10−2p5T11+p6T12 |
| 67 | 1−28T+647T2−10040T3+132218T4−1384784T5+12507300T6−1384784pT7+132218p2T8−10040p3T9+647p4T10−28p5T11+p6T12 |
| 71 | 1−18T+342T2−4106T3+50939T4−484328T5+4569916T6−484328pT7+50939p2T8−4106p3T9+342p4T10−18p5T11+p6T12 |
| 73 | 1−4T+245T2−458T3+26548T4+7374T5+2042124T6+7374pT7+26548p2T8−458p3T9+245p4T10−4p5T11+p6T12 |
| 79 | 1+2T+312T2+646T3+46403T4+83092T5+4426632T6+83092pT7+46403p2T8+646p3T9+312p4T10+2p5T11+p6T12 |
| 83 | 1−20T+416T2−4760T3+61547T4−531412T5+5714376T6−531412pT7+61547p2T8−4760p3T9+416p4T10−20p5T11+p6T12 |
| 89 | 1+6T+452T2+1886T3+87475T4+263996T5+9819472T6+263996pT7+87475p2T8+1886p3T9+452p4T10+6p5T11+p6T12 |
| 97 | 1−30T+669T2−9782T3+130940T4−1420356T5+15225068T6−1420356pT7+130940p2T8−9782p3T9+669p4T10−30p5T11+p6T12 |
show more | |
show less | |
L(s)=p∏ j=1∏12(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−4.30158779163089325054163801309, −3.85752121360033372576913655774, −3.76105047211732371899603899684, −3.73744379752030841500513750587, −3.73206265168408731468922392765, −3.66583225631843096271255268410, −3.64413995485556317993550868038, −3.51515940593787809576612255703, −3.18808190485466694826530391918, −2.99793209451759325089688961289, −2.95954879626251905735215396341, −2.91882570141122372032465381353, −2.83038416130972536185034211025, −2.49162512720235068673032840135, −2.16026894806286075331545168113, −2.13522910792283483847397317785, −2.12858840602731112202317422397, −2.07944515629037820820180601866, −1.48055897582911244022795010023, −1.23888522283115402199555471604, −1.01716072908136373062109066652, −0.869016709221692137526318871034, −0.68137599494507160814684577803, −0.51291678364496915903414966114, −0.48933382911001243158687814577,
0.48933382911001243158687814577, 0.51291678364496915903414966114, 0.68137599494507160814684577803, 0.869016709221692137526318871034, 1.01716072908136373062109066652, 1.23888522283115402199555471604, 1.48055897582911244022795010023, 2.07944515629037820820180601866, 2.12858840602731112202317422397, 2.13522910792283483847397317785, 2.16026894806286075331545168113, 2.49162512720235068673032840135, 2.83038416130972536185034211025, 2.91882570141122372032465381353, 2.95954879626251905735215396341, 2.99793209451759325089688961289, 3.18808190485466694826530391918, 3.51515940593787809576612255703, 3.64413995485556317993550868038, 3.66583225631843096271255268410, 3.73206265168408731468922392765, 3.73744379752030841500513750587, 3.76105047211732371899603899684, 3.85752121360033372576913655774, 4.30158779163089325054163801309
Plot not available for L-functions of degree greater than 10.