Properties

Label 3808.2.a.o
Level 38083808
Weight 22
Character orbit 3808.a
Self dual yes
Analytic conductor 30.40730.407
Analytic rank 00
Dimension 66
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3808,2,Mod(1,3808)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3808, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3808.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3808=25717 3808 = 2^{5} \cdot 7 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3808.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 30.407033089730.4070330897
Analytic rank: 00
Dimension: 66
Coefficient field: 6.6.147697840.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x62x510x4+10x3+18x216x+3 x^{6} - 2x^{5} - 10x^{4} + 10x^{3} + 18x^{2} - 16x + 3 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 2 2
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β1+1)q3+(β51)q5q7+(β5+β4β1+2)q9+(β3+β2+β1+1)q11+(β2+β11)q13+(β5+β2+2β11)q15++(2β4+3β3+2β2++4)q99+O(q100) q + ( - \beta_1 + 1) q^{3} + ( - \beta_{5} - 1) q^{5} - q^{7} + (\beta_{5} + \beta_{4} - \beta_1 + 2) q^{9} + ( - \beta_{3} + \beta_{2} + \beta_1 + 1) q^{11} + (\beta_{2} + \beta_1 - 1) q^{13} + ( - \beta_{5} + \beta_{2} + 2 \beta_1 - 1) q^{15}+ \cdots + (2 \beta_{4} + 3 \beta_{3} + 2 \beta_{2} + \cdots + 4) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+4q34q56q7+8q9+8q114q13+6q17+18q194q21+6q23+12q25+10q27+4q298q316q33+4q358q3718q39++32q99+O(q100) 6 q + 4 q^{3} - 4 q^{5} - 6 q^{7} + 8 q^{9} + 8 q^{11} - 4 q^{13} + 6 q^{17} + 18 q^{19} - 4 q^{21} + 6 q^{23} + 12 q^{25} + 10 q^{27} + 4 q^{29} - 8 q^{31} - 6 q^{33} + 4 q^{35} - 8 q^{37} - 18 q^{39}+ \cdots + 32 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x62x510x4+10x3+18x216x+3 x^{6} - 2x^{5} - 10x^{4} + 10x^{3} + 18x^{2} - 16x + 3 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν52ν49ν3+7ν2+13ν6 \nu^{5} - 2\nu^{4} - 9\nu^{3} + 7\nu^{2} + 13\nu - 6 Copy content Toggle raw display
β3\beta_{3}== ν52ν410ν3+9ν2+20ν10 \nu^{5} - 2\nu^{4} - 10\nu^{3} + 9\nu^{2} + 20\nu - 10 Copy content Toggle raw display
β4\beta_{4}== 2ν5+3ν4+22ν310ν244ν+14 -2\nu^{5} + 3\nu^{4} + 22\nu^{3} - 10\nu^{2} - 44\nu + 14 Copy content Toggle raw display
β5\beta_{5}== 2ν53ν422ν3+11ν2+43ν18 2\nu^{5} - 3\nu^{4} - 22\nu^{3} + 11\nu^{2} + 43\nu - 18 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β5+β4+β1+4 \beta_{5} + \beta_{4} + \beta _1 + 4 Copy content Toggle raw display
ν3\nu^{3}== 2β5+2β4β3+β2+9β1+4 2\beta_{5} + 2\beta_{4} - \beta_{3} + \beta_{2} + 9\beta _1 + 4 Copy content Toggle raw display
ν4\nu^{4}== 12β5+11β44β3+2β2+22β1+34 12\beta_{5} + 11\beta_{4} - 4\beta_{3} + 2\beta_{2} + 22\beta _1 + 34 Copy content Toggle raw display
ν5\nu^{5}== 35β5+33β417β3+14β2+105β1+82 35\beta_{5} + 33\beta_{4} - 17\beta_{3} + 14\beta_{2} + 105\beta _1 + 82 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
3.69817
1.46371
0.478948
0.301346
−1.75839
−2.18379
0 −2.69817 0 −2.06665 0 −1.00000 0 4.28014 0
1.2 0 −0.463711 0 −0.183002 0 −1.00000 0 −2.78497 0
1.3 0 0.521052 0 −3.59354 0 −1.00000 0 −2.72850 0
1.4 0 0.698654 0 3.66503 0 −1.00000 0 −2.51188 0
1.5 0 2.75839 0 1.29021 0 −1.00000 0 4.60870 0
1.6 0 3.18379 0 −3.11205 0 −1.00000 0 7.13652 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
77 +1 +1
1717 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3808.2.a.o yes 6
4.b odd 2 1 3808.2.a.g 6
8.b even 2 1 7616.2.a.bv 6
8.d odd 2 1 7616.2.a.cd 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3808.2.a.g 6 4.b odd 2 1
3808.2.a.o yes 6 1.a even 1 1 trivial
7616.2.a.bv 6 8.b even 2 1
7616.2.a.cd 6 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(3808))S_{2}^{\mathrm{new}}(\Gamma_0(3808)):

T364T355T34+30T3317T326T3+4 T_{3}^{6} - 4T_{3}^{5} - 5T_{3}^{4} + 30T_{3}^{3} - 17T_{3}^{2} - 6T_{3} + 4 Copy content Toggle raw display
T1168T11514T114+220T113308T112664T11+1168 T_{11}^{6} - 8T_{11}^{5} - 14T_{11}^{4} + 220T_{11}^{3} - 308T_{11}^{2} - 664T_{11} + 1168 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6 T^{6} Copy content Toggle raw display
33 T64T5++4 T^{6} - 4 T^{5} + \cdots + 4 Copy content Toggle raw display
55 T6+4T5++20 T^{6} + 4 T^{5} + \cdots + 20 Copy content Toggle raw display
77 (T+1)6 (T + 1)^{6} Copy content Toggle raw display
1111 T68T5++1168 T^{6} - 8 T^{5} + \cdots + 1168 Copy content Toggle raw display
1313 T6+4T5+64 T^{6} + 4 T^{5} + \cdots - 64 Copy content Toggle raw display
1717 (T1)6 (T - 1)^{6} Copy content Toggle raw display
1919 T618T5+2416 T^{6} - 18 T^{5} + \cdots - 2416 Copy content Toggle raw display
2323 T66T5+18688 T^{6} - 6 T^{5} + \cdots - 18688 Copy content Toggle raw display
2929 T64T5++592 T^{6} - 4 T^{5} + \cdots + 592 Copy content Toggle raw display
3131 T6+8T5++80 T^{6} + 8 T^{5} + \cdots + 80 Copy content Toggle raw display
3737 T6+8T5++21200 T^{6} + 8 T^{5} + \cdots + 21200 Copy content Toggle raw display
4141 T6+4T5+20 T^{6} + 4 T^{5} + \cdots - 20 Copy content Toggle raw display
4343 T620T5+16 T^{6} - 20 T^{5} + \cdots - 16 Copy content Toggle raw display
4747 T66T5++4800 T^{6} - 6 T^{5} + \cdots + 4800 Copy content Toggle raw display
5353 T614T5+14004 T^{6} - 14 T^{5} + \cdots - 14004 Copy content Toggle raw display
5959 T620T5++67840 T^{6} - 20 T^{5} + \cdots + 67840 Copy content Toggle raw display
6161 T62T5+2924 T^{6} - 2 T^{5} + \cdots - 2924 Copy content Toggle raw display
6767 T628T5+2672 T^{6} - 28 T^{5} + \cdots - 2672 Copy content Toggle raw display
7171 T618T5++68800 T^{6} - 18 T^{5} + \cdots + 68800 Copy content Toggle raw display
7373 T64T5+708 T^{6} - 4 T^{5} + \cdots - 708 Copy content Toggle raw display
7979 T6+2T5++3264 T^{6} + 2 T^{5} + \cdots + 3264 Copy content Toggle raw display
8383 T620T5++85648 T^{6} - 20 T^{5} + \cdots + 85648 Copy content Toggle raw display
8989 T6+6T5+432 T^{6} + 6 T^{5} + \cdots - 432 Copy content Toggle raw display
9797 T630T5++586604 T^{6} - 30 T^{5} + \cdots + 586604 Copy content Toggle raw display
show more
show less