Properties

Label 2-3808-1.1-c1-0-31
Degree $2$
Conductor $3808$
Sign $1$
Analytic cond. $30.4070$
Root an. cond. $5.51425$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.18·3-s − 3.11·5-s − 7-s + 7.13·9-s − 1.84·11-s − 5.61·13-s − 9.90·15-s + 17-s + 4.50·19-s − 3.18·21-s + 6.03·23-s + 4.68·25-s + 13.1·27-s + 7.37·29-s − 0.507·31-s − 5.88·33-s + 3.11·35-s + 10.3·37-s − 17.8·39-s + 0.176·41-s + 2.57·43-s − 22.2·45-s − 9.01·47-s + 49-s + 3.18·51-s + 9.46·53-s + 5.75·55-s + ⋯
L(s)  = 1  + 1.83·3-s − 1.39·5-s − 0.377·7-s + 2.37·9-s − 0.557·11-s − 1.55·13-s − 2.55·15-s + 0.242·17-s + 1.03·19-s − 0.694·21-s + 1.25·23-s + 0.936·25-s + 2.53·27-s + 1.36·29-s − 0.0911·31-s − 1.02·33-s + 0.526·35-s + 1.70·37-s − 2.86·39-s + 0.0275·41-s + 0.393·43-s − 3.31·45-s − 1.31·47-s + 0.142·49-s + 0.445·51-s + 1.30·53-s + 0.776·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3808\)    =    \(2^{5} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(30.4070\)
Root analytic conductor: \(5.51425\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3808,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.694797398\)
\(L(\frac12)\) \(\approx\) \(2.694797398\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
17 \( 1 - T \)
good3 \( 1 - 3.18T + 3T^{2} \)
5 \( 1 + 3.11T + 5T^{2} \)
11 \( 1 + 1.84T + 11T^{2} \)
13 \( 1 + 5.61T + 13T^{2} \)
19 \( 1 - 4.50T + 19T^{2} \)
23 \( 1 - 6.03T + 23T^{2} \)
29 \( 1 - 7.37T + 29T^{2} \)
31 \( 1 + 0.507T + 31T^{2} \)
37 \( 1 - 10.3T + 37T^{2} \)
41 \( 1 - 0.176T + 41T^{2} \)
43 \( 1 - 2.57T + 43T^{2} \)
47 \( 1 + 9.01T + 47T^{2} \)
53 \( 1 - 9.46T + 53T^{2} \)
59 \( 1 - 3.36T + 59T^{2} \)
61 \( 1 - 9.30T + 61T^{2} \)
67 \( 1 - 3.89T + 67T^{2} \)
71 \( 1 - 9.87T + 71T^{2} \)
73 \( 1 + 1.50T + 73T^{2} \)
79 \( 1 + 11.8T + 79T^{2} \)
83 \( 1 - 1.70T + 83T^{2} \)
89 \( 1 + 7.48T + 89T^{2} \)
97 \( 1 - 13.9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.345086699883556804074953653055, −7.80218912079351183992092328974, −7.35114541379517319049846313519, −6.78929108141975026099633326340, −5.15497554059460812904898814541, −4.47832681428991035758003179012, −3.66583225631843096271255268410, −2.91882570141122372032465381353, −2.49162512720235068673032840135, −0.869016709221692137526318871034, 0.869016709221692137526318871034, 2.49162512720235068673032840135, 2.91882570141122372032465381353, 3.66583225631843096271255268410, 4.47832681428991035758003179012, 5.15497554059460812904898814541, 6.78929108141975026099633326340, 7.35114541379517319049846313519, 7.80218912079351183992092328974, 8.345086699883556804074953653055

Graph of the $Z$-function along the critical line