Properties

Label 2-383-383.382-c0-0-2
Degree $2$
Conductor $383$
Sign $1$
Analytic cond. $0.191141$
Root an. cond. $0.437197$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.20·2-s + 0.184·3-s + 0.452·4-s − 0.222·6-s + 0.891·7-s + 0.659·8-s − 0.965·9-s + 0.0835·12-s − 1.07·14-s − 1.24·16-s + 1.47·17-s + 1.16·18-s + 1.86·19-s + 0.164·21-s − 1.70·23-s + 0.121·24-s + 25-s − 0.362·27-s + 0.403·28-s − 0.547·29-s + 1.47·31-s + 0.844·32-s − 1.78·34-s − 0.437·36-s − 2.24·38-s − 0.198·42-s − 1.96·43-s + ⋯
L(s)  = 1  − 1.20·2-s + 0.184·3-s + 0.452·4-s − 0.222·6-s + 0.891·7-s + 0.659·8-s − 0.965·9-s + 0.0835·12-s − 1.07·14-s − 1.24·16-s + 1.47·17-s + 1.16·18-s + 1.86·19-s + 0.164·21-s − 1.70·23-s + 0.121·24-s + 25-s − 0.362·27-s + 0.403·28-s − 0.547·29-s + 1.47·31-s + 0.844·32-s − 1.78·34-s − 0.437·36-s − 2.24·38-s − 0.198·42-s − 1.96·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 383 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 383 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(383\)
Sign: $1$
Analytic conductor: \(0.191141\)
Root analytic conductor: \(0.437197\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{383} (382, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 383,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.5058397731\)
\(L(\frac12)\) \(\approx\) \(0.5058397731\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad383 \( 1 - T \)
good2 \( 1 + 1.20T + T^{2} \)
3 \( 1 - 0.184T + T^{2} \)
5 \( 1 - T^{2} \)
7 \( 1 - 0.891T + T^{2} \)
11 \( 1 - T^{2} \)
13 \( 1 - T^{2} \)
17 \( 1 - 1.47T + T^{2} \)
19 \( 1 - 1.86T + T^{2} \)
23 \( 1 + 1.70T + T^{2} \)
29 \( 1 + 0.547T + T^{2} \)
31 \( 1 - 1.47T + T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 - T^{2} \)
43 \( 1 + 1.96T + T^{2} \)
47 \( 1 - T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 + 1.70T + T^{2} \)
71 \( 1 + 1.96T + T^{2} \)
73 \( 1 + 1.70T + T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.57404654250352235366322346112, −10.32945937183898458756537351103, −9.758400141855290309987027921255, −8.683983439354054797723730768459, −8.035945879104850228250535127044, −7.40626152370456132521394069717, −5.82320187234706372983611098365, −4.78449614205382577424308983650, −3.13829800942136174725975078055, −1.44306366962897073899379792133, 1.44306366962897073899379792133, 3.13829800942136174725975078055, 4.78449614205382577424308983650, 5.82320187234706372983611098365, 7.40626152370456132521394069717, 8.035945879104850228250535127044, 8.683983439354054797723730768459, 9.758400141855290309987027921255, 10.32945937183898458756537351103, 11.57404654250352235366322346112

Graph of the $Z$-function along the critical line