Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [383,1,Mod(382,383)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(383, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 1, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("383.382");
S:= CuspForms(chi, 1);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 383.b (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Projective image: | |
Projective field: | Galois closure of 17.1.463009808974713123841.1 |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of :
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
382.1 |
|
−1.96595 | −1.20527 | 2.86494 | 0 | 2.36949 | 0.184537 | −3.66638 | 0.452674 | 0 | ||||||||||||||||||||||||||||||||||||||||||
382.2 | −1.70043 | 1.86494 | 1.89148 | 0 | −3.17122 | −0.547326 | −1.51590 | 2.47802 | 0 | |||||||||||||||||||||||||||||||||||||||||||
382.3 | −1.20527 | 0.184537 | 0.452674 | 0 | −0.222416 | 0.891477 | 0.659675 | −0.965946 | 0 | |||||||||||||||||||||||||||||||||||||||||||
382.4 | −0.547326 | −1.96595 | −0.700434 | 0 | 1.07601 | −1.20527 | 0.930692 | 2.86494 | 0 | |||||||||||||||||||||||||||||||||||||||||||
382.5 | 0.184537 | 0.891477 | −0.965946 | 0 | 0.164510 | 1.47802 | −0.362789 | −0.205269 | 0 | |||||||||||||||||||||||||||||||||||||||||||
382.6 | 0.891477 | 1.47802 | −0.205269 | 0 | 1.31762 | −1.70043 | −1.07447 | 1.18454 | 0 | |||||||||||||||||||||||||||||||||||||||||||
382.7 | 1.47802 | −1.70043 | 1.18454 | 0 | −2.51327 | 1.86494 | 0.272749 | 1.89148 | 0 | |||||||||||||||||||||||||||||||||||||||||||
382.8 | 1.86494 | −0.547326 | 2.47802 | 0 | −1.02073 | −1.96595 | 2.75642 | −0.700434 | 0 | |||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
383.b | odd | 2 | 1 | CM by |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 383.1.b.a | ✓ | 8 |
3.b | odd | 2 | 1 | 3447.1.d.a | 8 | ||
383.b | odd | 2 | 1 | CM | 383.1.b.a | ✓ | 8 |
1149.c | even | 2 | 1 | 3447.1.d.a | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
383.1.b.a | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
383.1.b.a | ✓ | 8 | 383.b | odd | 2 | 1 | CM |
3447.1.d.a | 8 | 3.b | odd | 2 | 1 | ||
3447.1.d.a | 8 | 1149.c | even | 2 | 1 |
Hecke kernels
This newform subspace is the entire newspace .