Properties

Label 383.1.b.a
Level 383383
Weight 11
Character orbit 383.b
Self dual yes
Analytic conductor 0.1910.191
Analytic rank 00
Dimension 88
Projective image D17D_{17}
CM discriminant -383
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [383,1,Mod(382,383)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(383, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("383.382");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 383 383
Weight: k k == 1 1
Character orbit: [χ][\chi] == 383.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 0.1911418998380.191141899838
Analytic rank: 00
Dimension: 88
Coefficient field: Q(ζ34)+\Q(\zeta_{34})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x77x6+6x5+15x410x310x2+4x+1 x^{8} - x^{7} - 7x^{6} + 6x^{5} + 15x^{4} - 10x^{3} - 10x^{2} + 4x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D17D_{17}
Projective field: Galois closure of 17.1.463009808974713123841.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β6q2+β4q3+(β5+1)q4+(β7+β2)q6β3q7+(β6β1)q8+(β7β6+β5++β1)q9++(β6β5+2)q98+O(q100) q + \beta_{6} q^{2} + \beta_{4} q^{3} + ( - \beta_{5} + 1) q^{4} + ( - \beta_{7} + \beta_{2}) q^{6} - \beta_{3} q^{7} + (\beta_{6} - \beta_1) q^{8} + (\beta_{7} - \beta_{6} + \beta_{5} + \cdots + \beta_1) q^{9}+ \cdots + (\beta_{6} - \beta_{5} + 2) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8qq2q3+7q42q6q72q8+7q93q122q14+6q16q173q18q192q21q234q24+8q252q273q28q29++14q98+O(q100) 8 q - q^{2} - q^{3} + 7 q^{4} - 2 q^{6} - q^{7} - 2 q^{8} + 7 q^{9} - 3 q^{12} - 2 q^{14} + 6 q^{16} - q^{17} - 3 q^{18} - q^{19} - 2 q^{21} - q^{23} - 4 q^{24} + 8 q^{25} - 2 q^{27} - 3 q^{28} - q^{29}+ \cdots + 14 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of ν=ζ34+ζ341\nu = \zeta_{34} + \zeta_{34}^{-1}:

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν22 \nu^{2} - 2 Copy content Toggle raw display
β3\beta_{3}== ν33ν \nu^{3} - 3\nu Copy content Toggle raw display
β4\beta_{4}== ν44ν2+2 \nu^{4} - 4\nu^{2} + 2 Copy content Toggle raw display
β5\beta_{5}== ν55ν3+5ν \nu^{5} - 5\nu^{3} + 5\nu Copy content Toggle raw display
β6\beta_{6}== ν66ν4+9ν22 \nu^{6} - 6\nu^{4} + 9\nu^{2} - 2 Copy content Toggle raw display
β7\beta_{7}== ν77ν5+14ν37ν \nu^{7} - 7\nu^{5} + 14\nu^{3} - 7\nu Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+2 \beta_{2} + 2 Copy content Toggle raw display
ν3\nu^{3}== β3+3β1 \beta_{3} + 3\beta_1 Copy content Toggle raw display
ν4\nu^{4}== β4+4β2+6 \beta_{4} + 4\beta_{2} + 6 Copy content Toggle raw display
ν5\nu^{5}== β5+5β3+10β1 \beta_{5} + 5\beta_{3} + 10\beta_1 Copy content Toggle raw display
ν6\nu^{6}== β6+6β4+15β2+20 \beta_{6} + 6\beta_{4} + 15\beta_{2} + 20 Copy content Toggle raw display
ν7\nu^{7}== β7+7β5+21β3+35β1 \beta_{7} + 7\beta_{5} + 21\beta_{3} + 35\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/383Z)×\left(\mathbb{Z}/383\mathbb{Z}\right)^\times.

nn 55
χ(n)\chi(n) 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
382.1
1.70043
−0.184537
−1.86494
−1.47802
0.547326
1.96595
1.20527
−0.891477
−1.96595 −1.20527 2.86494 0 2.36949 0.184537 −3.66638 0.452674 0
382.2 −1.70043 1.86494 1.89148 0 −3.17122 −0.547326 −1.51590 2.47802 0
382.3 −1.20527 0.184537 0.452674 0 −0.222416 0.891477 0.659675 −0.965946 0
382.4 −0.547326 −1.96595 −0.700434 0 1.07601 −1.20527 0.930692 2.86494 0
382.5 0.184537 0.891477 −0.965946 0 0.164510 1.47802 −0.362789 −0.205269 0
382.6 0.891477 1.47802 −0.205269 0 1.31762 −1.70043 −1.07447 1.18454 0
382.7 1.47802 −1.70043 1.18454 0 −2.51327 1.86494 0.272749 1.89148 0
382.8 1.86494 −0.547326 2.47802 0 −1.02073 −1.96595 2.75642 −0.700434 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 382.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
383.b odd 2 1 CM by Q(383)\Q(\sqrt{-383})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 383.1.b.a 8
3.b odd 2 1 3447.1.d.a 8
383.b odd 2 1 CM 383.1.b.a 8
1149.c even 2 1 3447.1.d.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
383.1.b.a 8 1.a even 1 1 trivial
383.1.b.a 8 383.b odd 2 1 CM
3447.1.d.a 8 3.b odd 2 1
3447.1.d.a 8 1149.c even 2 1

Hecke kernels

This newform subspace is the entire newspace S1new(383,[χ])S_{1}^{\mathrm{new}}(383, [\chi]).

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8+T77T6++1 T^{8} + T^{7} - 7 T^{6} + \cdots + 1 Copy content Toggle raw display
33 T8+T77T6++1 T^{8} + T^{7} - 7 T^{6} + \cdots + 1 Copy content Toggle raw display
55 T8 T^{8} Copy content Toggle raw display
77 T8+T77T6++1 T^{8} + T^{7} - 7 T^{6} + \cdots + 1 Copy content Toggle raw display
1111 T8 T^{8} Copy content Toggle raw display
1313 T8 T^{8} Copy content Toggle raw display
1717 T8+T77T6++1 T^{8} + T^{7} - 7 T^{6} + \cdots + 1 Copy content Toggle raw display
1919 T8+T77T6++1 T^{8} + T^{7} - 7 T^{6} + \cdots + 1 Copy content Toggle raw display
2323 T8+T77T6++1 T^{8} + T^{7} - 7 T^{6} + \cdots + 1 Copy content Toggle raw display
2929 T8+T77T6++1 T^{8} + T^{7} - 7 T^{6} + \cdots + 1 Copy content Toggle raw display
3131 T8+T77T6++1 T^{8} + T^{7} - 7 T^{6} + \cdots + 1 Copy content Toggle raw display
3737 T8 T^{8} Copy content Toggle raw display
4141 T8 T^{8} Copy content Toggle raw display
4343 T8+T77T6++1 T^{8} + T^{7} - 7 T^{6} + \cdots + 1 Copy content Toggle raw display
4747 T8 T^{8} Copy content Toggle raw display
5353 T8 T^{8} Copy content Toggle raw display
5959 T8 T^{8} Copy content Toggle raw display
6161 T8 T^{8} Copy content Toggle raw display
6767 T8+T77T6++1 T^{8} + T^{7} - 7 T^{6} + \cdots + 1 Copy content Toggle raw display
7171 T8+T77T6++1 T^{8} + T^{7} - 7 T^{6} + \cdots + 1 Copy content Toggle raw display
7373 T8+T77T6++1 T^{8} + T^{7} - 7 T^{6} + \cdots + 1 Copy content Toggle raw display
7979 T8 T^{8} Copy content Toggle raw display
8383 T8 T^{8} Copy content Toggle raw display
8989 T8 T^{8} Copy content Toggle raw display
9797 T8 T^{8} Copy content Toggle raw display
show more
show less