Properties

Label 2-383-383.382-c0-0-6
Degree $2$
Conductor $383$
Sign $1$
Analytic cond. $0.191141$
Root an. cond. $0.437197$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.891·2-s + 1.47·3-s − 0.205·4-s + 1.31·6-s − 1.70·7-s − 1.07·8-s + 1.18·9-s − 0.303·12-s − 1.51·14-s − 0.752·16-s + 1.86·17-s + 1.05·18-s − 1.96·19-s − 2.51·21-s − 0.547·23-s − 1.58·24-s + 25-s + 0.272·27-s + 0.349·28-s − 1.20·29-s + 1.86·31-s + 0.403·32-s + 1.66·34-s − 0.243·36-s − 1.75·38-s − 2.24·42-s + 0.184·43-s + ⋯
L(s)  = 1  + 0.891·2-s + 1.47·3-s − 0.205·4-s + 1.31·6-s − 1.70·7-s − 1.07·8-s + 1.18·9-s − 0.303·12-s − 1.51·14-s − 0.752·16-s + 1.86·17-s + 1.05·18-s − 1.96·19-s − 2.51·21-s − 0.547·23-s − 1.58·24-s + 25-s + 0.272·27-s + 0.349·28-s − 1.20·29-s + 1.86·31-s + 0.403·32-s + 1.66·34-s − 0.243·36-s − 1.75·38-s − 2.24·42-s + 0.184·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 383 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 383 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(383\)
Sign: $1$
Analytic conductor: \(0.191141\)
Root analytic conductor: \(0.437197\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{383} (382, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 383,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.431067236\)
\(L(\frac12)\) \(\approx\) \(1.431067236\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad383 \( 1 - T \)
good2 \( 1 - 0.891T + T^{2} \)
3 \( 1 - 1.47T + T^{2} \)
5 \( 1 - T^{2} \)
7 \( 1 + 1.70T + T^{2} \)
11 \( 1 - T^{2} \)
13 \( 1 - T^{2} \)
17 \( 1 - 1.86T + T^{2} \)
19 \( 1 + 1.96T + T^{2} \)
23 \( 1 + 0.547T + T^{2} \)
29 \( 1 + 1.20T + T^{2} \)
31 \( 1 - 1.86T + T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 - T^{2} \)
43 \( 1 - 0.184T + T^{2} \)
47 \( 1 - T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 + 0.547T + T^{2} \)
71 \( 1 - 0.184T + T^{2} \)
73 \( 1 + 0.547T + T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.12478836322166737712407082904, −10.30990921324437962391350196378, −9.623861615623269093766998701375, −8.866471556374795387314424262367, −8.011441433238300186406678981185, −6.68519497218131499508559325096, −5.79682017306189312189117808696, −4.22476005282874989607483117241, −3.40525931811136009959446897213, −2.68118171349689725668581355238, 2.68118171349689725668581355238, 3.40525931811136009959446897213, 4.22476005282874989607483117241, 5.79682017306189312189117808696, 6.68519497218131499508559325096, 8.011441433238300186406678981185, 8.866471556374795387314424262367, 9.623861615623269093766998701375, 10.30990921324437962391350196378, 12.12478836322166737712407082904

Graph of the $Z$-function along the critical line