L(s) = 1 | + 3-s + (−1 − 2i)5-s + 2i·7-s + 9-s + 2i·11-s − 2·13-s + (−1 − 2i)15-s − 6i·17-s + 8i·19-s + 2i·21-s − 4i·23-s + (−3 + 4i)25-s + 27-s − 8i·29-s + 2i·33-s + ⋯ |
L(s) = 1 | + 0.577·3-s + (−0.447 − 0.894i)5-s + 0.755i·7-s + 0.333·9-s + 0.603i·11-s − 0.554·13-s + (−0.258 − 0.516i)15-s − 1.45i·17-s + 1.83i·19-s + 0.436i·21-s − 0.834i·23-s + (−0.600 + 0.800i)25-s + 0.192·27-s − 1.48i·29-s + 0.348i·33-s + ⋯ |
Λ(s)=(=(3840s/2ΓC(s)L(s)(0.948+0.316i)Λ(2−s)
Λ(s)=(=(3840s/2ΓC(s+1/2)L(s)(0.948+0.316i)Λ(1−s)
Degree: |
2 |
Conductor: |
3840
= 28⋅3⋅5
|
Sign: |
0.948+0.316i
|
Analytic conductor: |
30.6625 |
Root analytic conductor: |
5.53737 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3840(2689,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3840, ( :1/2), 0.948+0.316i)
|
Particular Values
L(1) |
≈ |
2.046157128 |
L(21) |
≈ |
2.046157128 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−T |
| 5 | 1+(1+2i)T |
good | 7 | 1−2iT−7T2 |
| 11 | 1−2iT−11T2 |
| 13 | 1+2T+13T2 |
| 17 | 1+6iT−17T2 |
| 19 | 1−8iT−19T2 |
| 23 | 1+4iT−23T2 |
| 29 | 1+8iT−29T2 |
| 31 | 1+31T2 |
| 37 | 1−10T+37T2 |
| 41 | 1+2T+41T2 |
| 43 | 1−12T+43T2 |
| 47 | 1−47T2 |
| 53 | 1−10T+53T2 |
| 59 | 1−6iT−59T2 |
| 61 | 1−2iT−61T2 |
| 67 | 1−8T+67T2 |
| 71 | 1+4T+71T2 |
| 73 | 1+4iT−73T2 |
| 79 | 1+8T+79T2 |
| 83 | 1−4T+83T2 |
| 89 | 1−6T+89T2 |
| 97 | 1+8iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.454161731621803197736000328595, −7.73703881860251520331600841664, −7.32885717521294159283979550907, −6.09222664372060925189475261887, −5.43489347138969183726316710585, −4.49273717386838013180738857005, −4.02800632675067231706846133713, −2.74427696285614815105492608089, −2.10652803904730204309678777279, −0.76059464814911069789425674428,
0.846455618909862638156068365217, 2.26233135901830134180366625644, 3.07125601519601540624737078443, 3.81550548915274542901625141548, 4.48099107336196954487092116749, 5.60257831360239646988579279010, 6.54939893834362399380307207137, 7.17608752393453152373898427159, 7.66990402823539862264235295878, 8.472265957283386840669805876342