Properties

Label 2-3840-40.29-c1-0-47
Degree $2$
Conductor $3840$
Sign $0.948 + 0.316i$
Analytic cond. $30.6625$
Root an. cond. $5.53737$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + (−1 − 2i)5-s + 2i·7-s + 9-s + 2i·11-s − 2·13-s + (−1 − 2i)15-s − 6i·17-s + 8i·19-s + 2i·21-s − 4i·23-s + (−3 + 4i)25-s + 27-s − 8i·29-s + 2i·33-s + ⋯
L(s)  = 1  + 0.577·3-s + (−0.447 − 0.894i)5-s + 0.755i·7-s + 0.333·9-s + 0.603i·11-s − 0.554·13-s + (−0.258 − 0.516i)15-s − 1.45i·17-s + 1.83i·19-s + 0.436i·21-s − 0.834i·23-s + (−0.600 + 0.800i)25-s + 0.192·27-s − 1.48i·29-s + 0.348i·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.948 + 0.316i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3840 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.948 + 0.316i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3840\)    =    \(2^{8} \cdot 3 \cdot 5\)
Sign: $0.948 + 0.316i$
Analytic conductor: \(30.6625\)
Root analytic conductor: \(5.53737\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3840} (2689, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3840,\ (\ :1/2),\ 0.948 + 0.316i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.046157128\)
\(L(\frac12)\) \(\approx\) \(2.046157128\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + (1 + 2i)T \)
good7 \( 1 - 2iT - 7T^{2} \)
11 \( 1 - 2iT - 11T^{2} \)
13 \( 1 + 2T + 13T^{2} \)
17 \( 1 + 6iT - 17T^{2} \)
19 \( 1 - 8iT - 19T^{2} \)
23 \( 1 + 4iT - 23T^{2} \)
29 \( 1 + 8iT - 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 10T + 37T^{2} \)
41 \( 1 + 2T + 41T^{2} \)
43 \( 1 - 12T + 43T^{2} \)
47 \( 1 - 47T^{2} \)
53 \( 1 - 10T + 53T^{2} \)
59 \( 1 - 6iT - 59T^{2} \)
61 \( 1 - 2iT - 61T^{2} \)
67 \( 1 - 8T + 67T^{2} \)
71 \( 1 + 4T + 71T^{2} \)
73 \( 1 + 4iT - 73T^{2} \)
79 \( 1 + 8T + 79T^{2} \)
83 \( 1 - 4T + 83T^{2} \)
89 \( 1 - 6T + 89T^{2} \)
97 \( 1 + 8iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.454161731621803197736000328595, −7.73703881860251520331600841664, −7.32885717521294159283979550907, −6.09222664372060925189475261887, −5.43489347138969183726316710585, −4.49273717386838013180738857005, −4.02800632675067231706846133713, −2.74427696285614815105492608089, −2.10652803904730204309678777279, −0.76059464814911069789425674428, 0.846455618909862638156068365217, 2.26233135901830134180366625644, 3.07125601519601540624737078443, 3.81550548915274542901625141548, 4.48099107336196954487092116749, 5.60257831360239646988579279010, 6.54939893834362399380307207137, 7.17608752393453152373898427159, 7.66990402823539862264235295878, 8.472265957283386840669805876342

Graph of the $Z$-function along the critical line