Properties

Label 3840.2.d.v
Level 38403840
Weight 22
Character orbit 3840.d
Analytic conductor 30.66330.663
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3840,2,Mod(2689,3840)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3840, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3840.2689");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3840=2835 3840 = 2^{8} \cdot 3 \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3840.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 30.662554376230.6625543762
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 120)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=2i\beta = 2i. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+q3+(β1)q5+βq7+q9+βq112q13+(β1)q153βq17+4βq19+βq212βq23+(2β3)q25+q27++βq99+O(q100) q + q^{3} + ( - \beta - 1) q^{5} + \beta q^{7} + q^{9} + \beta q^{11} - 2 q^{13} + ( - \beta - 1) q^{15} - 3 \beta q^{17} + 4 \beta q^{19} + \beta q^{21} - 2 \beta q^{23} + (2 \beta - 3) q^{25} + q^{27} + \cdots + \beta q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q32q5+2q94q132q156q25+2q27+8q35+20q374q394q41+24q432q45+6q49+20q53+8q55+4q65+16q67++32q95+O(q100) 2 q + 2 q^{3} - 2 q^{5} + 2 q^{9} - 4 q^{13} - 2 q^{15} - 6 q^{25} + 2 q^{27} + 8 q^{35} + 20 q^{37} - 4 q^{39} - 4 q^{41} + 24 q^{43} - 2 q^{45} + 6 q^{49} + 20 q^{53} + 8 q^{55} + 4 q^{65} + 16 q^{67}+ \cdots + 32 q^{95}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3840Z)×\left(\mathbb{Z}/3840\mathbb{Z}\right)^\times.

nn 511511 15371537 25612561 28212821
χ(n)\chi(n) 11 1-1 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
2689.1
1.00000i
1.00000i
0 1.00000 0 −1.00000 2.00000i 0 2.00000i 0 1.00000 0
2689.2 0 1.00000 0 −1.00000 + 2.00000i 0 2.00000i 0 1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
40.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3840.2.d.v 2
4.b odd 2 1 3840.2.d.d 2
5.b even 2 1 3840.2.d.m 2
8.b even 2 1 3840.2.d.m 2
8.d odd 2 1 3840.2.d.ba 2
16.e even 4 1 240.2.f.c 2
16.e even 4 1 960.2.f.b 2
16.f odd 4 1 120.2.f.a 2
16.f odd 4 1 960.2.f.a 2
20.d odd 2 1 3840.2.d.ba 2
40.e odd 2 1 3840.2.d.d 2
40.f even 2 1 inner 3840.2.d.v 2
48.i odd 4 1 720.2.f.b 2
48.i odd 4 1 2880.2.f.r 2
48.k even 4 1 360.2.f.a 2
48.k even 4 1 2880.2.f.t 2
80.i odd 4 1 1200.2.a.h 1
80.i odd 4 1 4800.2.a.n 1
80.j even 4 1 600.2.a.d 1
80.j even 4 1 4800.2.a.k 1
80.k odd 4 1 120.2.f.a 2
80.k odd 4 1 960.2.f.a 2
80.q even 4 1 240.2.f.c 2
80.q even 4 1 960.2.f.b 2
80.s even 4 1 600.2.a.g 1
80.s even 4 1 4800.2.a.ch 1
80.t odd 4 1 1200.2.a.l 1
80.t odd 4 1 4800.2.a.ci 1
240.t even 4 1 360.2.f.a 2
240.t even 4 1 2880.2.f.t 2
240.z odd 4 1 1800.2.a.g 1
240.bb even 4 1 3600.2.a.bi 1
240.bd odd 4 1 1800.2.a.q 1
240.bf even 4 1 3600.2.a.n 1
240.bm odd 4 1 720.2.f.b 2
240.bm odd 4 1 2880.2.f.r 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
120.2.f.a 2 16.f odd 4 1
120.2.f.a 2 80.k odd 4 1
240.2.f.c 2 16.e even 4 1
240.2.f.c 2 80.q even 4 1
360.2.f.a 2 48.k even 4 1
360.2.f.a 2 240.t even 4 1
600.2.a.d 1 80.j even 4 1
600.2.a.g 1 80.s even 4 1
720.2.f.b 2 48.i odd 4 1
720.2.f.b 2 240.bm odd 4 1
960.2.f.a 2 16.f odd 4 1
960.2.f.a 2 80.k odd 4 1
960.2.f.b 2 16.e even 4 1
960.2.f.b 2 80.q even 4 1
1200.2.a.h 1 80.i odd 4 1
1200.2.a.l 1 80.t odd 4 1
1800.2.a.g 1 240.z odd 4 1
1800.2.a.q 1 240.bd odd 4 1
2880.2.f.r 2 48.i odd 4 1
2880.2.f.r 2 240.bm odd 4 1
2880.2.f.t 2 48.k even 4 1
2880.2.f.t 2 240.t even 4 1
3600.2.a.n 1 240.bf even 4 1
3600.2.a.bi 1 240.bb even 4 1
3840.2.d.d 2 4.b odd 2 1
3840.2.d.d 2 40.e odd 2 1
3840.2.d.m 2 5.b even 2 1
3840.2.d.m 2 8.b even 2 1
3840.2.d.v 2 1.a even 1 1 trivial
3840.2.d.v 2 40.f even 2 1 inner
3840.2.d.ba 2 8.d odd 2 1
3840.2.d.ba 2 20.d odd 2 1
4800.2.a.k 1 80.j even 4 1
4800.2.a.n 1 80.i odd 4 1
4800.2.a.ch 1 80.s even 4 1
4800.2.a.ci 1 80.t odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(3840,[χ])S_{2}^{\mathrm{new}}(3840, [\chi]):

T72+4 T_{7}^{2} + 4 Copy content Toggle raw display
T112+4 T_{11}^{2} + 4 Copy content Toggle raw display
T13+2 T_{13} + 2 Copy content Toggle raw display
T31 T_{31} Copy content Toggle raw display
T3710 T_{37} - 10 Copy content Toggle raw display
T4312 T_{43} - 12 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 (T1)2 (T - 1)^{2} Copy content Toggle raw display
55 T2+2T+5 T^{2} + 2T + 5 Copy content Toggle raw display
77 T2+4 T^{2} + 4 Copy content Toggle raw display
1111 T2+4 T^{2} + 4 Copy content Toggle raw display
1313 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
1717 T2+36 T^{2} + 36 Copy content Toggle raw display
1919 T2+64 T^{2} + 64 Copy content Toggle raw display
2323 T2+16 T^{2} + 16 Copy content Toggle raw display
2929 T2+64 T^{2} + 64 Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 (T10)2 (T - 10)^{2} Copy content Toggle raw display
4141 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
4343 (T12)2 (T - 12)^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 (T10)2 (T - 10)^{2} Copy content Toggle raw display
5959 T2+36 T^{2} + 36 Copy content Toggle raw display
6161 T2+4 T^{2} + 4 Copy content Toggle raw display
6767 (T8)2 (T - 8)^{2} Copy content Toggle raw display
7171 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
7373 T2+16 T^{2} + 16 Copy content Toggle raw display
7979 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
8383 (T4)2 (T - 4)^{2} Copy content Toggle raw display
8989 (T6)2 (T - 6)^{2} Copy content Toggle raw display
9797 T2+64 T^{2} + 64 Copy content Toggle raw display
show more
show less