gp: [N,k,chi] = [3840,2,Mod(2689,3840)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3840, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3840.2689");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,2,0,-2,0,0,0,2,0,0,0,-4,0,-2,0,0,0,0,0,0,0,0,0,-6,0,2,0,
0,0,0,0,0,0,8]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(35)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of β = 2 i \beta = 2i β = 2 i .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 3840 Z ) × \left(\mathbb{Z}/3840\mathbb{Z}\right)^\times ( Z / 3 8 4 0 Z ) × .
n n n
511 511 5 1 1
1537 1537 1 5 3 7
2561 2561 2 5 6 1
2821 2821 2 8 2 1
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
1 1 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 3840 , [ χ ] ) S_{2}^{\mathrm{new}}(3840, [\chi]) S 2 n e w ( 3 8 4 0 , [ χ ] ) :
T 7 2 + 4 T_{7}^{2} + 4 T 7 2 + 4
T7^2 + 4
T 11 2 + 4 T_{11}^{2} + 4 T 1 1 2 + 4
T11^2 + 4
T 13 + 2 T_{13} + 2 T 1 3 + 2
T13 + 2
T 31 T_{31} T 3 1
T31
T 37 − 10 T_{37} - 10 T 3 7 − 1 0
T37 - 10
T 43 − 12 T_{43} - 12 T 4 3 − 1 2
T43 - 12
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
( T − 1 ) 2 (T - 1)^{2} ( T − 1 ) 2
(T - 1)^2
5 5 5
T 2 + 2 T + 5 T^{2} + 2T + 5 T 2 + 2 T + 5
T^2 + 2*T + 5
7 7 7
T 2 + 4 T^{2} + 4 T 2 + 4
T^2 + 4
11 11 1 1
T 2 + 4 T^{2} + 4 T 2 + 4
T^2 + 4
13 13 1 3
( T + 2 ) 2 (T + 2)^{2} ( T + 2 ) 2
(T + 2)^2
17 17 1 7
T 2 + 36 T^{2} + 36 T 2 + 3 6
T^2 + 36
19 19 1 9
T 2 + 64 T^{2} + 64 T 2 + 6 4
T^2 + 64
23 23 2 3
T 2 + 16 T^{2} + 16 T 2 + 1 6
T^2 + 16
29 29 2 9
T 2 + 64 T^{2} + 64 T 2 + 6 4
T^2 + 64
31 31 3 1
T 2 T^{2} T 2
T^2
37 37 3 7
( T − 10 ) 2 (T - 10)^{2} ( T − 1 0 ) 2
(T - 10)^2
41 41 4 1
( T + 2 ) 2 (T + 2)^{2} ( T + 2 ) 2
(T + 2)^2
43 43 4 3
( T − 12 ) 2 (T - 12)^{2} ( T − 1 2 ) 2
(T - 12)^2
47 47 4 7
T 2 T^{2} T 2
T^2
53 53 5 3
( T − 10 ) 2 (T - 10)^{2} ( T − 1 0 ) 2
(T - 10)^2
59 59 5 9
T 2 + 36 T^{2} + 36 T 2 + 3 6
T^2 + 36
61 61 6 1
T 2 + 4 T^{2} + 4 T 2 + 4
T^2 + 4
67 67 6 7
( T − 8 ) 2 (T - 8)^{2} ( T − 8 ) 2
(T - 8)^2
71 71 7 1
( T + 4 ) 2 (T + 4)^{2} ( T + 4 ) 2
(T + 4)^2
73 73 7 3
T 2 + 16 T^{2} + 16 T 2 + 1 6
T^2 + 16
79 79 7 9
( T + 8 ) 2 (T + 8)^{2} ( T + 8 ) 2
(T + 8)^2
83 83 8 3
( T − 4 ) 2 (T - 4)^{2} ( T − 4 ) 2
(T - 4)^2
89 89 8 9
( T − 6 ) 2 (T - 6)^{2} ( T − 6 ) 2
(T - 6)^2
97 97 9 7
T 2 + 64 T^{2} + 64 T 2 + 6 4
T^2 + 64
show more
show less