Properties

Label 2-3872-8.5-c1-0-36
Degree $2$
Conductor $3872$
Sign $0.925 - 0.379i$
Analytic cond. $30.9180$
Root an. cond. $5.56040$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.28i·3-s − 1.58i·5-s − 1.86·7-s + 1.34·9-s − 0.322i·13-s + 2.03·15-s − 4.79·17-s − 3.38i·19-s − 2.40i·21-s − 3.08·23-s + 2.49·25-s + 5.58i·27-s + 10.4i·29-s + 2.82·31-s + 2.95i·35-s + ⋯
L(s)  = 1  + 0.742i·3-s − 0.707i·5-s − 0.706·7-s + 0.448·9-s − 0.0893i·13-s + 0.525·15-s − 1.16·17-s − 0.776i·19-s − 0.524i·21-s − 0.642·23-s + 0.499·25-s + 1.07i·27-s + 1.93i·29-s + 0.506·31-s + 0.499i·35-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.925 - 0.379i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.925 - 0.379i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3872\)    =    \(2^{5} \cdot 11^{2}\)
Sign: $0.925 - 0.379i$
Analytic conductor: \(30.9180\)
Root analytic conductor: \(5.56040\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3872} (1937, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3872,\ (\ :1/2),\ 0.925 - 0.379i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.642705650\)
\(L(\frac12)\) \(\approx\) \(1.642705650\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
11 \( 1 \)
good3 \( 1 - 1.28iT - 3T^{2} \)
5 \( 1 + 1.58iT - 5T^{2} \)
7 \( 1 + 1.86T + 7T^{2} \)
13 \( 1 + 0.322iT - 13T^{2} \)
17 \( 1 + 4.79T + 17T^{2} \)
19 \( 1 + 3.38iT - 19T^{2} \)
23 \( 1 + 3.08T + 23T^{2} \)
29 \( 1 - 10.4iT - 29T^{2} \)
31 \( 1 - 2.82T + 31T^{2} \)
37 \( 1 - 3.57iT - 37T^{2} \)
41 \( 1 - 4.49T + 41T^{2} \)
43 \( 1 + 3.61iT - 43T^{2} \)
47 \( 1 - 12.7T + 47T^{2} \)
53 \( 1 + 5.65iT - 53T^{2} \)
59 \( 1 - 5.38iT - 59T^{2} \)
61 \( 1 + 10.9iT - 61T^{2} \)
67 \( 1 + 10.9iT - 67T^{2} \)
71 \( 1 - 11.1T + 71T^{2} \)
73 \( 1 - 12.6T + 73T^{2} \)
79 \( 1 - 5.97T + 79T^{2} \)
83 \( 1 + 0.139iT - 83T^{2} \)
89 \( 1 - 4.28T + 89T^{2} \)
97 \( 1 - 12.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.845801028306270590998803315897, −7.88091969288846463184995949223, −6.87810880287321255395343170959, −6.46313145948204869981284991432, −5.22761832873060003272979485431, −4.80300753719900881597025401565, −3.99213055519798057885344834664, −3.21135097150157044282960825818, −2.07971319911654571438348743164, −0.75285301824138727534315666219, 0.71150691335577342515415993470, 2.08866389139288901295802860397, 2.66406702943345438643949575406, 3.86506457504027702323870031237, 4.42685711645595034996344435904, 5.82636942114321960520203680230, 6.33545320982591088815334583596, 6.91195492894231923358089011517, 7.60045426301554049763447459207, 8.237292119557547954565521323114

Graph of the $Z$-function along the critical line