L(s) = 1 | + 1.28i·3-s − 1.58i·5-s − 1.86·7-s + 1.34·9-s − 0.322i·13-s + 2.03·15-s − 4.79·17-s − 3.38i·19-s − 2.40i·21-s − 3.08·23-s + 2.49·25-s + 5.58i·27-s + 10.4i·29-s + 2.82·31-s + 2.95i·35-s + ⋯ |
L(s) = 1 | + 0.742i·3-s − 0.707i·5-s − 0.706·7-s + 0.448·9-s − 0.0893i·13-s + 0.525·15-s − 1.16·17-s − 0.776i·19-s − 0.524i·21-s − 0.642·23-s + 0.499·25-s + 1.07i·27-s + 1.93i·29-s + 0.506·31-s + 0.499i·35-s + ⋯ |
Λ(s)=(=(3872s/2ΓC(s)L(s)(0.925−0.379i)Λ(2−s)
Λ(s)=(=(3872s/2ΓC(s+1/2)L(s)(0.925−0.379i)Λ(1−s)
Degree: |
2 |
Conductor: |
3872
= 25⋅112
|
Sign: |
0.925−0.379i
|
Analytic conductor: |
30.9180 |
Root analytic conductor: |
5.56040 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3872(1937,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3872, ( :1/2), 0.925−0.379i)
|
Particular Values
L(1) |
≈ |
1.642705650 |
L(21) |
≈ |
1.642705650 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1 |
good | 3 | 1−1.28iT−3T2 |
| 5 | 1+1.58iT−5T2 |
| 7 | 1+1.86T+7T2 |
| 13 | 1+0.322iT−13T2 |
| 17 | 1+4.79T+17T2 |
| 19 | 1+3.38iT−19T2 |
| 23 | 1+3.08T+23T2 |
| 29 | 1−10.4iT−29T2 |
| 31 | 1−2.82T+31T2 |
| 37 | 1−3.57iT−37T2 |
| 41 | 1−4.49T+41T2 |
| 43 | 1+3.61iT−43T2 |
| 47 | 1−12.7T+47T2 |
| 53 | 1+5.65iT−53T2 |
| 59 | 1−5.38iT−59T2 |
| 61 | 1+10.9iT−61T2 |
| 67 | 1+10.9iT−67T2 |
| 71 | 1−11.1T+71T2 |
| 73 | 1−12.6T+73T2 |
| 79 | 1−5.97T+79T2 |
| 83 | 1+0.139iT−83T2 |
| 89 | 1−4.28T+89T2 |
| 97 | 1−12.3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.845801028306270590998803315897, −7.88091969288846463184995949223, −6.87810880287321255395343170959, −6.46313145948204869981284991432, −5.22761832873060003272979485431, −4.80300753719900881597025401565, −3.99213055519798057885344834664, −3.21135097150157044282960825818, −2.07971319911654571438348743164, −0.75285301824138727534315666219,
0.71150691335577342515415993470, 2.08866389139288901295802860397, 2.66406702943345438643949575406, 3.86506457504027702323870031237, 4.42685711645595034996344435904, 5.82636942114321960520203680230, 6.33545320982591088815334583596, 6.91195492894231923358089011517, 7.60045426301554049763447459207, 8.237292119557547954565521323114