Properties

Label 3872.2.c.i.1937.15
Level $3872$
Weight $2$
Character 3872.1937
Analytic conductor $30.918$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3872,2,Mod(1937,3872)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3872, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3872.1937");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3872 = 2^{5} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3872.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(30.9180756626\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{18} - 2 x^{16} - 2 x^{15} - 4 x^{14} - 4 x^{13} + 12 x^{12} + 16 x^{11} + 32 x^{9} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1937.15
Root \(-1.30820 + 0.537231i\) of defining polynomial
Character \(\chi\) \(=\) 3872.1937
Dual form 3872.2.c.i.1937.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.28633i q^{3} -1.58193i q^{5} -1.86825 q^{7} +1.34535 q^{9} -0.322072i q^{13} +2.03488 q^{15} -4.79250 q^{17} -3.38629i q^{19} -2.40318i q^{21} -3.08044 q^{23} +2.49750 q^{25} +5.58956i q^{27} +10.4131i q^{29} +2.82067 q^{31} +2.95543i q^{35} +3.57225i q^{37} +0.414291 q^{39} +4.49931 q^{41} -3.61796i q^{43} -2.12826i q^{45} +12.7265 q^{47} -3.50965 q^{49} -6.16474i q^{51} -5.65725i q^{53} +4.35588 q^{57} +5.38428i q^{59} -10.9289i q^{61} -2.51346 q^{63} -0.509496 q^{65} -10.9885i q^{67} -3.96246i q^{69} +11.1359 q^{71} +12.6094 q^{73} +3.21261i q^{75} +5.97994 q^{79} -3.15396 q^{81} -0.139643i q^{83} +7.58140i q^{85} -13.3946 q^{87} +4.28990 q^{89} +0.601711i q^{91} +3.62831i q^{93} -5.35686 q^{95} +12.3942 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 10 q^{7} - 10 q^{9} + 4 q^{15} - 2 q^{17} + 4 q^{23} - 2 q^{25} - 2 q^{31} + 28 q^{39} + 2 q^{41} - 2 q^{47} - 2 q^{49} - 22 q^{57} - 30 q^{63} + 18 q^{65} + 34 q^{71} - 2 q^{73} - 58 q^{79} - 12 q^{81}+ \cdots + 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3872\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(1695\) \(2785\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.28633i 0.742663i 0.928500 + 0.371332i \(0.121099\pi\)
−0.928500 + 0.371332i \(0.878901\pi\)
\(4\) 0 0
\(5\) − 1.58193i − 0.707460i −0.935348 0.353730i \(-0.884913\pi\)
0.935348 0.353730i \(-0.115087\pi\)
\(6\) 0 0
\(7\) −1.86825 −0.706131 −0.353066 0.935599i \(-0.614861\pi\)
−0.353066 + 0.935599i \(0.614861\pi\)
\(8\) 0 0
\(9\) 1.34535 0.448452
\(10\) 0 0
\(11\) 0 0
\(12\) 0 0
\(13\) − 0.322072i − 0.0893268i −0.999002 0.0446634i \(-0.985778\pi\)
0.999002 0.0446634i \(-0.0142215\pi\)
\(14\) 0 0
\(15\) 2.03488 0.525404
\(16\) 0 0
\(17\) −4.79250 −1.16235 −0.581177 0.813778i \(-0.697407\pi\)
−0.581177 + 0.813778i \(0.697407\pi\)
\(18\) 0 0
\(19\) − 3.38629i − 0.776867i −0.921477 0.388434i \(-0.873016\pi\)
0.921477 0.388434i \(-0.126984\pi\)
\(20\) 0 0
\(21\) − 2.40318i − 0.524418i
\(22\) 0 0
\(23\) −3.08044 −0.642316 −0.321158 0.947026i \(-0.604072\pi\)
−0.321158 + 0.947026i \(0.604072\pi\)
\(24\) 0 0
\(25\) 2.49750 0.499500
\(26\) 0 0
\(27\) 5.58956i 1.07571i
\(28\) 0 0
\(29\) 10.4131i 1.93366i 0.255422 + 0.966830i \(0.417785\pi\)
−0.255422 + 0.966830i \(0.582215\pi\)
\(30\) 0 0
\(31\) 2.82067 0.506607 0.253303 0.967387i \(-0.418483\pi\)
0.253303 + 0.967387i \(0.418483\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.95543i 0.499560i
\(36\) 0 0
\(37\) 3.57225i 0.587274i 0.955917 + 0.293637i \(0.0948657\pi\)
−0.955917 + 0.293637i \(0.905134\pi\)
\(38\) 0 0
\(39\) 0.414291 0.0663397
\(40\) 0 0
\(41\) 4.49931 0.702674 0.351337 0.936249i \(-0.385727\pi\)
0.351337 + 0.936249i \(0.385727\pi\)
\(42\) 0 0
\(43\) − 3.61796i − 0.551734i −0.961196 0.275867i \(-0.911035\pi\)
0.961196 0.275867i \(-0.0889649\pi\)
\(44\) 0 0
\(45\) − 2.12826i − 0.317262i
\(46\) 0 0
\(47\) 12.7265 1.85635 0.928174 0.372147i \(-0.121378\pi\)
0.928174 + 0.372147i \(0.121378\pi\)
\(48\) 0 0
\(49\) −3.50965 −0.501378
\(50\) 0 0
\(51\) − 6.16474i − 0.863237i
\(52\) 0 0
\(53\) − 5.65725i − 0.777083i −0.921431 0.388541i \(-0.872979\pi\)
0.921431 0.388541i \(-0.127021\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 4.35588 0.576951
\(58\) 0 0
\(59\) 5.38428i 0.700973i 0.936568 + 0.350487i \(0.113984\pi\)
−0.936568 + 0.350487i \(0.886016\pi\)
\(60\) 0 0
\(61\) − 10.9289i − 1.39931i −0.714482 0.699654i \(-0.753338\pi\)
0.714482 0.699654i \(-0.246662\pi\)
\(62\) 0 0
\(63\) −2.51346 −0.316666
\(64\) 0 0
\(65\) −0.509496 −0.0631951
\(66\) 0 0
\(67\) − 10.9885i − 1.34246i −0.741249 0.671230i \(-0.765766\pi\)
0.741249 0.671230i \(-0.234234\pi\)
\(68\) 0 0
\(69\) − 3.96246i − 0.477024i
\(70\) 0 0
\(71\) 11.1359 1.32159 0.660795 0.750566i \(-0.270219\pi\)
0.660795 + 0.750566i \(0.270219\pi\)
\(72\) 0 0
\(73\) 12.6094 1.47582 0.737912 0.674897i \(-0.235812\pi\)
0.737912 + 0.674897i \(0.235812\pi\)
\(74\) 0 0
\(75\) 3.21261i 0.370961i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 5.97994 0.672796 0.336398 0.941720i \(-0.390791\pi\)
0.336398 + 0.941720i \(0.390791\pi\)
\(80\) 0 0
\(81\) −3.15396 −0.350440
\(82\) 0 0
\(83\) − 0.139643i − 0.0153279i −0.999971 0.00766393i \(-0.997560\pi\)
0.999971 0.00766393i \(-0.00243953\pi\)
\(84\) 0 0
\(85\) 7.58140i 0.822318i
\(86\) 0 0
\(87\) −13.3946 −1.43606
\(88\) 0 0
\(89\) 4.28990 0.454729 0.227364 0.973810i \(-0.426989\pi\)
0.227364 + 0.973810i \(0.426989\pi\)
\(90\) 0 0
\(91\) 0.601711i 0.0630765i
\(92\) 0 0
\(93\) 3.62831i 0.376238i
\(94\) 0 0
\(95\) −5.35686 −0.549602
\(96\) 0 0
\(97\) 12.3942 1.25844 0.629218 0.777229i \(-0.283375\pi\)
0.629218 + 0.777229i \(0.283375\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 15.3627i 1.52865i 0.644831 + 0.764325i \(0.276928\pi\)
−0.644831 + 0.764325i \(0.723072\pi\)
\(102\) 0 0
\(103\) −8.17691 −0.805695 −0.402848 0.915267i \(-0.631980\pi\)
−0.402848 + 0.915267i \(0.631980\pi\)
\(104\) 0 0
\(105\) −3.80166 −0.371005
\(106\) 0 0
\(107\) − 5.03234i − 0.486494i −0.969964 0.243247i \(-0.921787\pi\)
0.969964 0.243247i \(-0.0782126\pi\)
\(108\) 0 0
\(109\) 10.1839i 0.975439i 0.873000 + 0.487720i \(0.162171\pi\)
−0.873000 + 0.487720i \(0.837829\pi\)
\(110\) 0 0
\(111\) −4.59509 −0.436147
\(112\) 0 0
\(113\) 8.05191 0.757460 0.378730 0.925507i \(-0.376361\pi\)
0.378730 + 0.925507i \(0.376361\pi\)
\(114\) 0 0
\(115\) 4.87303i 0.454413i
\(116\) 0 0
\(117\) − 0.433302i − 0.0400588i
\(118\) 0 0
\(119\) 8.95359 0.820774
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) 5.78760i 0.521850i
\(124\) 0 0
\(125\) − 11.8605i − 1.06084i
\(126\) 0 0
\(127\) −13.0462 −1.15766 −0.578830 0.815448i \(-0.696490\pi\)
−0.578830 + 0.815448i \(0.696490\pi\)
\(128\) 0 0
\(129\) 4.65389 0.409752
\(130\) 0 0
\(131\) − 11.5519i − 1.00930i −0.863325 0.504648i \(-0.831622\pi\)
0.863325 0.504648i \(-0.168378\pi\)
\(132\) 0 0
\(133\) 6.32642i 0.548570i
\(134\) 0 0
\(135\) 8.84229 0.761023
\(136\) 0 0
\(137\) 18.0192 1.53948 0.769742 0.638355i \(-0.220385\pi\)
0.769742 + 0.638355i \(0.220385\pi\)
\(138\) 0 0
\(139\) 6.70490i 0.568702i 0.958720 + 0.284351i \(0.0917781\pi\)
−0.958720 + 0.284351i \(0.908222\pi\)
\(140\) 0 0
\(141\) 16.3705i 1.37864i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 16.4727 1.36799
\(146\) 0 0
\(147\) − 4.51457i − 0.372355i
\(148\) 0 0
\(149\) 4.00757i 0.328313i 0.986434 + 0.164156i \(0.0524902\pi\)
−0.986434 + 0.164156i \(0.947510\pi\)
\(150\) 0 0
\(151\) −2.33413 −0.189948 −0.0949742 0.995480i \(-0.530277\pi\)
−0.0949742 + 0.995480i \(0.530277\pi\)
\(152\) 0 0
\(153\) −6.44762 −0.521259
\(154\) 0 0
\(155\) − 4.46210i − 0.358404i
\(156\) 0 0
\(157\) 7.94584i 0.634147i 0.948401 + 0.317073i \(0.102700\pi\)
−0.948401 + 0.317073i \(0.897300\pi\)
\(158\) 0 0
\(159\) 7.27709 0.577111
\(160\) 0 0
\(161\) 5.75502 0.453559
\(162\) 0 0
\(163\) − 5.61529i − 0.439823i −0.975520 0.219912i \(-0.929423\pi\)
0.975520 0.219912i \(-0.0705769\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 18.0271 1.39498 0.697489 0.716595i \(-0.254300\pi\)
0.697489 + 0.716595i \(0.254300\pi\)
\(168\) 0 0
\(169\) 12.8963 0.992021
\(170\) 0 0
\(171\) − 4.55576i − 0.348387i
\(172\) 0 0
\(173\) − 15.0682i − 1.14562i −0.819689 0.572809i \(-0.805854\pi\)
0.819689 0.572809i \(-0.194146\pi\)
\(174\) 0 0
\(175\) −4.66595 −0.352713
\(176\) 0 0
\(177\) −6.92596 −0.520587
\(178\) 0 0
\(179\) 22.2870i 1.66581i 0.553419 + 0.832903i \(0.313323\pi\)
−0.553419 + 0.832903i \(0.686677\pi\)
\(180\) 0 0
\(181\) − 11.5115i − 0.855643i −0.903863 0.427822i \(-0.859281\pi\)
0.903863 0.427822i \(-0.140719\pi\)
\(182\) 0 0
\(183\) 14.0582 1.03921
\(184\) 0 0
\(185\) 5.65104 0.415473
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) − 10.4427i − 0.759594i
\(190\) 0 0
\(191\) 10.7973 0.781262 0.390631 0.920547i \(-0.372257\pi\)
0.390631 + 0.920547i \(0.372257\pi\)
\(192\) 0 0
\(193\) −9.05654 −0.651904 −0.325952 0.945386i \(-0.605685\pi\)
−0.325952 + 0.945386i \(0.605685\pi\)
\(194\) 0 0
\(195\) − 0.655379i − 0.0469327i
\(196\) 0 0
\(197\) − 8.74114i − 0.622780i −0.950282 0.311390i \(-0.899205\pi\)
0.950282 0.311390i \(-0.100795\pi\)
\(198\) 0 0
\(199\) −2.55580 −0.181176 −0.0905878 0.995888i \(-0.528875\pi\)
−0.0905878 + 0.995888i \(0.528875\pi\)
\(200\) 0 0
\(201\) 14.1349 0.996996
\(202\) 0 0
\(203\) − 19.4542i − 1.36542i
\(204\) 0 0
\(205\) − 7.11759i − 0.497114i
\(206\) 0 0
\(207\) −4.14428 −0.288048
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) − 3.31568i − 0.228261i −0.993466 0.114130i \(-0.963592\pi\)
0.993466 0.114130i \(-0.0364082\pi\)
\(212\) 0 0
\(213\) 14.3245i 0.981497i
\(214\) 0 0
\(215\) −5.72335 −0.390330
\(216\) 0 0
\(217\) −5.26971 −0.357731
\(218\) 0 0
\(219\) 16.2199i 1.09604i
\(220\) 0 0
\(221\) 1.54353i 0.103829i
\(222\) 0 0
\(223\) 14.9051 0.998121 0.499061 0.866567i \(-0.333678\pi\)
0.499061 + 0.866567i \(0.333678\pi\)
\(224\) 0 0
\(225\) 3.36003 0.224002
\(226\) 0 0
\(227\) − 1.32270i − 0.0877904i −0.999036 0.0438952i \(-0.986023\pi\)
0.999036 0.0438952i \(-0.0139768\pi\)
\(228\) 0 0
\(229\) 23.6029i 1.55972i 0.625953 + 0.779861i \(0.284710\pi\)
−0.625953 + 0.779861i \(0.715290\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2.47082 −0.161869 −0.0809343 0.996719i \(-0.525790\pi\)
−0.0809343 + 0.996719i \(0.525790\pi\)
\(234\) 0 0
\(235\) − 20.1324i − 1.31329i
\(236\) 0 0
\(237\) 7.69218i 0.499661i
\(238\) 0 0
\(239\) 15.8198 1.02330 0.511648 0.859195i \(-0.329035\pi\)
0.511648 + 0.859195i \(0.329035\pi\)
\(240\) 0 0
\(241\) 3.22511 0.207748 0.103874 0.994590i \(-0.466876\pi\)
0.103874 + 0.994590i \(0.466876\pi\)
\(242\) 0 0
\(243\) 12.7117i 0.815453i
\(244\) 0 0
\(245\) 5.55201i 0.354705i
\(246\) 0 0
\(247\) −1.09063 −0.0693951
\(248\) 0 0
\(249\) 0.179628 0.0113834
\(250\) 0 0
\(251\) − 0.345844i − 0.0218295i −0.999940 0.0109147i \(-0.996526\pi\)
0.999940 0.0109147i \(-0.00347434\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −9.75218 −0.610705
\(256\) 0 0
\(257\) −0.421872 −0.0263157 −0.0131578 0.999913i \(-0.504188\pi\)
−0.0131578 + 0.999913i \(0.504188\pi\)
\(258\) 0 0
\(259\) − 6.67385i − 0.414693i
\(260\) 0 0
\(261\) 14.0093i 0.867153i
\(262\) 0 0
\(263\) −2.35352 −0.145124 −0.0725621 0.997364i \(-0.523118\pi\)
−0.0725621 + 0.997364i \(0.523118\pi\)
\(264\) 0 0
\(265\) −8.94936 −0.549755
\(266\) 0 0
\(267\) 5.51823i 0.337710i
\(268\) 0 0
\(269\) 23.0569i 1.40580i 0.711287 + 0.702901i \(0.248112\pi\)
−0.711287 + 0.702901i \(0.751888\pi\)
\(270\) 0 0
\(271\) 4.37644 0.265850 0.132925 0.991126i \(-0.457563\pi\)
0.132925 + 0.991126i \(0.457563\pi\)
\(272\) 0 0
\(273\) −0.773999 −0.0468446
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 6.26661i 0.376524i 0.982119 + 0.188262i \(0.0602854\pi\)
−0.982119 + 0.188262i \(0.939715\pi\)
\(278\) 0 0
\(279\) 3.79480 0.227189
\(280\) 0 0
\(281\) −11.1852 −0.667250 −0.333625 0.942706i \(-0.608272\pi\)
−0.333625 + 0.942706i \(0.608272\pi\)
\(282\) 0 0
\(283\) 31.9805i 1.90104i 0.310662 + 0.950521i \(0.399449\pi\)
−0.310662 + 0.950521i \(0.600551\pi\)
\(284\) 0 0
\(285\) − 6.89069i − 0.408169i
\(286\) 0 0
\(287\) −8.40583 −0.496180
\(288\) 0 0
\(289\) 5.96810 0.351065
\(290\) 0 0
\(291\) 15.9430i 0.934594i
\(292\) 0 0
\(293\) − 7.66484i − 0.447785i −0.974614 0.223892i \(-0.928124\pi\)
0.974614 0.223892i \(-0.0718764\pi\)
\(294\) 0 0
\(295\) 8.51754 0.495911
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.992124i 0.0573760i
\(300\) 0 0
\(301\) 6.75925i 0.389597i
\(302\) 0 0
\(303\) −19.7616 −1.13527
\(304\) 0 0
\(305\) −17.2888 −0.989954
\(306\) 0 0
\(307\) − 3.57511i − 0.204042i −0.994782 0.102021i \(-0.967469\pi\)
0.994782 0.102021i \(-0.0325309\pi\)
\(308\) 0 0
\(309\) − 10.5182i − 0.598360i
\(310\) 0 0
\(311\) 0.0783210 0.00444118 0.00222059 0.999998i \(-0.499293\pi\)
0.00222059 + 0.999998i \(0.499293\pi\)
\(312\) 0 0
\(313\) −8.94774 −0.505756 −0.252878 0.967498i \(-0.581377\pi\)
−0.252878 + 0.967498i \(0.581377\pi\)
\(314\) 0 0
\(315\) 3.97611i 0.224028i
\(316\) 0 0
\(317\) − 24.4832i − 1.37512i −0.726129 0.687558i \(-0.758683\pi\)
0.726129 0.687558i \(-0.241317\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 6.47324 0.361301
\(322\) 0 0
\(323\) 16.2288i 0.902994i
\(324\) 0 0
\(325\) − 0.804377i − 0.0446188i
\(326\) 0 0
\(327\) −13.0998 −0.724423
\(328\) 0 0
\(329\) −23.7762 −1.31083
\(330\) 0 0
\(331\) 24.2083i 1.33061i 0.746572 + 0.665305i \(0.231698\pi\)
−0.746572 + 0.665305i \(0.768302\pi\)
\(332\) 0 0
\(333\) 4.80594i 0.263364i
\(334\) 0 0
\(335\) −17.3830 −0.949737
\(336\) 0 0
\(337\) −22.3046 −1.21501 −0.607505 0.794315i \(-0.707830\pi\)
−0.607505 + 0.794315i \(0.707830\pi\)
\(338\) 0 0
\(339\) 10.3574i 0.562537i
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 19.6346 1.06017
\(344\) 0 0
\(345\) −6.26833 −0.337475
\(346\) 0 0
\(347\) − 16.8395i − 0.903991i −0.892020 0.451996i \(-0.850712\pi\)
0.892020 0.451996i \(-0.149288\pi\)
\(348\) 0 0
\(349\) − 5.97392i − 0.319777i −0.987135 0.159888i \(-0.948887\pi\)
0.987135 0.159888i \(-0.0511134\pi\)
\(350\) 0 0
\(351\) 1.80024 0.0960899
\(352\) 0 0
\(353\) −6.69469 −0.356322 −0.178161 0.984001i \(-0.557015\pi\)
−0.178161 + 0.984001i \(0.557015\pi\)
\(354\) 0 0
\(355\) − 17.6162i − 0.934973i
\(356\) 0 0
\(357\) 11.5173i 0.609559i
\(358\) 0 0
\(359\) 20.1204 1.06191 0.530957 0.847399i \(-0.321833\pi\)
0.530957 + 0.847399i \(0.321833\pi\)
\(360\) 0 0
\(361\) 7.53307 0.396477
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 19.9472i − 1.04409i
\(366\) 0 0
\(367\) −7.45942 −0.389378 −0.194689 0.980865i \(-0.562370\pi\)
−0.194689 + 0.980865i \(0.562370\pi\)
\(368\) 0 0
\(369\) 6.05317 0.315115
\(370\) 0 0
\(371\) 10.5691i 0.548723i
\(372\) 0 0
\(373\) 1.53907i 0.0796902i 0.999206 + 0.0398451i \(0.0126864\pi\)
−0.999206 + 0.0398451i \(0.987314\pi\)
\(374\) 0 0
\(375\) 15.2565 0.787844
\(376\) 0 0
\(377\) 3.35376 0.172728
\(378\) 0 0
\(379\) 5.35013i 0.274818i 0.990514 + 0.137409i \(0.0438774\pi\)
−0.990514 + 0.137409i \(0.956123\pi\)
\(380\) 0 0
\(381\) − 16.7817i − 0.859751i
\(382\) 0 0
\(383\) 9.59330 0.490195 0.245097 0.969498i \(-0.421180\pi\)
0.245097 + 0.969498i \(0.421180\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 4.86744i − 0.247426i
\(388\) 0 0
\(389\) − 11.2345i − 0.569614i −0.958585 0.284807i \(-0.908071\pi\)
0.958585 0.284807i \(-0.0919294\pi\)
\(390\) 0 0
\(391\) 14.7630 0.746598
\(392\) 0 0
\(393\) 14.8596 0.749566
\(394\) 0 0
\(395\) − 9.45984i − 0.475976i
\(396\) 0 0
\(397\) 9.83583i 0.493646i 0.969061 + 0.246823i \(0.0793866\pi\)
−0.969061 + 0.246823i \(0.920613\pi\)
\(398\) 0 0
\(399\) −8.13787 −0.407403
\(400\) 0 0
\(401\) 10.7477 0.536714 0.268357 0.963319i \(-0.413519\pi\)
0.268357 + 0.963319i \(0.413519\pi\)
\(402\) 0 0
\(403\) − 0.908459i − 0.0452536i
\(404\) 0 0
\(405\) 4.98933i 0.247922i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 6.33056 0.313026 0.156513 0.987676i \(-0.449975\pi\)
0.156513 + 0.987676i \(0.449975\pi\)
\(410\) 0 0
\(411\) 23.1786i 1.14332i
\(412\) 0 0
\(413\) − 10.0592i − 0.494979i
\(414\) 0 0
\(415\) −0.220906 −0.0108438
\(416\) 0 0
\(417\) −8.62471 −0.422354
\(418\) 0 0
\(419\) − 8.63496i − 0.421846i −0.977503 0.210923i \(-0.932353\pi\)
0.977503 0.210923i \(-0.0676469\pi\)
\(420\) 0 0
\(421\) 29.4762i 1.43658i 0.695743 + 0.718291i \(0.255075\pi\)
−0.695743 + 0.718291i \(0.744925\pi\)
\(422\) 0 0
\(423\) 17.1216 0.832482
\(424\) 0 0
\(425\) −11.9693 −0.580596
\(426\) 0 0
\(427\) 20.4180i 0.988095i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −21.6684 −1.04373 −0.521864 0.853029i \(-0.674763\pi\)
−0.521864 + 0.853029i \(0.674763\pi\)
\(432\) 0 0
\(433\) −11.5153 −0.553392 −0.276696 0.960957i \(-0.589240\pi\)
−0.276696 + 0.960957i \(0.589240\pi\)
\(434\) 0 0
\(435\) 21.1894i 1.01595i
\(436\) 0 0
\(437\) 10.4312i 0.498994i
\(438\) 0 0
\(439\) 35.9563 1.71610 0.858049 0.513567i \(-0.171676\pi\)
0.858049 + 0.513567i \(0.171676\pi\)
\(440\) 0 0
\(441\) −4.72172 −0.224844
\(442\) 0 0
\(443\) − 27.8156i − 1.32156i −0.750581 0.660779i \(-0.770226\pi\)
0.750581 0.660779i \(-0.229774\pi\)
\(444\) 0 0
\(445\) − 6.78632i − 0.321702i
\(446\) 0 0
\(447\) −5.15506 −0.243826
\(448\) 0 0
\(449\) −13.0847 −0.617505 −0.308753 0.951142i \(-0.599912\pi\)
−0.308753 + 0.951142i \(0.599912\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) − 3.00246i − 0.141068i
\(454\) 0 0
\(455\) 0.951864 0.0446241
\(456\) 0 0
\(457\) 6.63015 0.310145 0.155073 0.987903i \(-0.450439\pi\)
0.155073 + 0.987903i \(0.450439\pi\)
\(458\) 0 0
\(459\) − 26.7880i − 1.25036i
\(460\) 0 0
\(461\) − 8.43029i − 0.392638i −0.980540 0.196319i \(-0.937101\pi\)
0.980540 0.196319i \(-0.0628988\pi\)
\(462\) 0 0
\(463\) −9.16056 −0.425727 −0.212864 0.977082i \(-0.568279\pi\)
−0.212864 + 0.977082i \(0.568279\pi\)
\(464\) 0 0
\(465\) 5.73973 0.266173
\(466\) 0 0
\(467\) − 11.5736i − 0.535560i −0.963480 0.267780i \(-0.913710\pi\)
0.963480 0.267780i \(-0.0862900\pi\)
\(468\) 0 0
\(469\) 20.5293i 0.947954i
\(470\) 0 0
\(471\) −10.2210 −0.470957
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) − 8.45726i − 0.388046i
\(476\) 0 0
\(477\) − 7.61101i − 0.348484i
\(478\) 0 0
\(479\) 19.1582 0.875360 0.437680 0.899131i \(-0.355800\pi\)
0.437680 + 0.899131i \(0.355800\pi\)
\(480\) 0 0
\(481\) 1.15052 0.0524593
\(482\) 0 0
\(483\) 7.40286i 0.336842i
\(484\) 0 0
\(485\) − 19.6067i − 0.890293i
\(486\) 0 0
\(487\) −42.4387 −1.92308 −0.961540 0.274664i \(-0.911433\pi\)
−0.961540 + 0.274664i \(0.911433\pi\)
\(488\) 0 0
\(489\) 7.22312 0.326641
\(490\) 0 0
\(491\) 39.2592i 1.77174i 0.463930 + 0.885872i \(0.346439\pi\)
−0.463930 + 0.885872i \(0.653561\pi\)
\(492\) 0 0
\(493\) − 49.9047i − 2.24759i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −20.8047 −0.933217
\(498\) 0 0
\(499\) − 22.6637i − 1.01457i −0.861779 0.507284i \(-0.830649\pi\)
0.861779 0.507284i \(-0.169351\pi\)
\(500\) 0 0
\(501\) 23.1888i 1.03600i
\(502\) 0 0
\(503\) 15.5389 0.692847 0.346424 0.938078i \(-0.387396\pi\)
0.346424 + 0.938078i \(0.387396\pi\)
\(504\) 0 0
\(505\) 24.3028 1.08146
\(506\) 0 0
\(507\) 16.5889i 0.736737i
\(508\) 0 0
\(509\) − 13.4499i − 0.596156i −0.954542 0.298078i \(-0.903654\pi\)
0.954542 0.298078i \(-0.0963455\pi\)
\(510\) 0 0
\(511\) −23.5576 −1.04213
\(512\) 0 0
\(513\) 18.9278 0.835685
\(514\) 0 0
\(515\) 12.9353i 0.569997i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 19.3827 0.850808
\(520\) 0 0
\(521\) −6.69298 −0.293225 −0.146612 0.989194i \(-0.546837\pi\)
−0.146612 + 0.989194i \(0.546837\pi\)
\(522\) 0 0
\(523\) 23.7587i 1.03889i 0.854503 + 0.519447i \(0.173862\pi\)
−0.854503 + 0.519447i \(0.826138\pi\)
\(524\) 0 0
\(525\) − 6.00196i − 0.261947i
\(526\) 0 0
\(527\) −13.5181 −0.588856
\(528\) 0 0
\(529\) −13.5109 −0.587431
\(530\) 0 0
\(531\) 7.24376i 0.314353i
\(532\) 0 0
\(533\) − 1.44910i − 0.0627677i
\(534\) 0 0
\(535\) −7.96080 −0.344175
\(536\) 0 0
\(537\) −28.6684 −1.23713
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 28.5717i 1.22839i 0.789153 + 0.614197i \(0.210520\pi\)
−0.789153 + 0.614197i \(0.789480\pi\)
\(542\) 0 0
\(543\) 14.8076 0.635455
\(544\) 0 0
\(545\) 16.1102 0.690084
\(546\) 0 0
\(547\) − 30.2265i − 1.29239i −0.763172 0.646195i \(-0.776359\pi\)
0.763172 0.646195i \(-0.223641\pi\)
\(548\) 0 0
\(549\) − 14.7033i − 0.627522i
\(550\) 0 0
\(551\) 35.2616 1.50220
\(552\) 0 0
\(553\) −11.1720 −0.475083
\(554\) 0 0
\(555\) 7.26911i 0.308556i
\(556\) 0 0
\(557\) 7.94247i 0.336533i 0.985742 + 0.168267i \(0.0538170\pi\)
−0.985742 + 0.168267i \(0.946183\pi\)
\(558\) 0 0
\(559\) −1.16525 −0.0492846
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 17.7730i 0.749043i 0.927218 + 0.374521i \(0.122193\pi\)
−0.927218 + 0.374521i \(0.877807\pi\)
\(564\) 0 0
\(565\) − 12.7375i − 0.535872i
\(566\) 0 0
\(567\) 5.89237 0.247456
\(568\) 0 0
\(569\) −28.3627 −1.18903 −0.594513 0.804086i \(-0.702655\pi\)
−0.594513 + 0.804086i \(0.702655\pi\)
\(570\) 0 0
\(571\) 11.9221i 0.498923i 0.968385 + 0.249461i \(0.0802535\pi\)
−0.968385 + 0.249461i \(0.919746\pi\)
\(572\) 0 0
\(573\) 13.8888i 0.580215i
\(574\) 0 0
\(575\) −7.69340 −0.320837
\(576\) 0 0
\(577\) −24.5999 −1.02411 −0.512053 0.858954i \(-0.671115\pi\)
−0.512053 + 0.858954i \(0.671115\pi\)
\(578\) 0 0
\(579\) − 11.6497i − 0.484145i
\(580\) 0 0
\(581\) 0.260889i 0.0108235i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −0.685452 −0.0283400
\(586\) 0 0
\(587\) 12.0954i 0.499229i 0.968345 + 0.249614i \(0.0803039\pi\)
−0.968345 + 0.249614i \(0.919696\pi\)
\(588\) 0 0
\(589\) − 9.55159i − 0.393566i
\(590\) 0 0
\(591\) 11.2440 0.462516
\(592\) 0 0
\(593\) 1.77063 0.0727109 0.0363554 0.999339i \(-0.488425\pi\)
0.0363554 + 0.999339i \(0.488425\pi\)
\(594\) 0 0
\(595\) − 14.1639i − 0.580665i
\(596\) 0 0
\(597\) − 3.28760i − 0.134552i
\(598\) 0 0
\(599\) 14.3212 0.585149 0.292574 0.956243i \(-0.405488\pi\)
0.292574 + 0.956243i \(0.405488\pi\)
\(600\) 0 0
\(601\) −20.9923 −0.856293 −0.428147 0.903709i \(-0.640833\pi\)
−0.428147 + 0.903709i \(0.640833\pi\)
\(602\) 0 0
\(603\) − 14.7835i − 0.602029i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −34.0000 −1.38002 −0.690009 0.723800i \(-0.742394\pi\)
−0.690009 + 0.723800i \(0.742394\pi\)
\(608\) 0 0
\(609\) 25.0245 1.01405
\(610\) 0 0
\(611\) − 4.09885i − 0.165822i
\(612\) 0 0
\(613\) − 13.3983i − 0.541152i −0.962699 0.270576i \(-0.912786\pi\)
0.962699 0.270576i \(-0.0872141\pi\)
\(614\) 0 0
\(615\) 9.15557 0.369188
\(616\) 0 0
\(617\) 24.0930 0.969946 0.484973 0.874529i \(-0.338829\pi\)
0.484973 + 0.874529i \(0.338829\pi\)
\(618\) 0 0
\(619\) 2.41918i 0.0972349i 0.998817 + 0.0486175i \(0.0154815\pi\)
−0.998817 + 0.0486175i \(0.984518\pi\)
\(620\) 0 0
\(621\) − 17.2183i − 0.690946i
\(622\) 0 0
\(623\) −8.01461 −0.321098
\(624\) 0 0
\(625\) −6.27497 −0.250999
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 17.1200i − 0.682620i
\(630\) 0 0
\(631\) −40.5047 −1.61247 −0.806234 0.591596i \(-0.798498\pi\)
−0.806234 + 0.591596i \(0.798498\pi\)
\(632\) 0 0
\(633\) 4.26506 0.169521
\(634\) 0 0
\(635\) 20.6381i 0.818998i
\(636\) 0 0
\(637\) 1.13036i 0.0447865i
\(638\) 0 0
\(639\) 14.9818 0.592670
\(640\) 0 0
\(641\) −22.2703 −0.879624 −0.439812 0.898090i \(-0.644955\pi\)
−0.439812 + 0.898090i \(0.644955\pi\)
\(642\) 0 0
\(643\) − 24.9678i − 0.984633i −0.870416 0.492316i \(-0.836150\pi\)
0.870416 0.492316i \(-0.163850\pi\)
\(644\) 0 0
\(645\) − 7.36212i − 0.289883i
\(646\) 0 0
\(647\) 12.3518 0.485599 0.242799 0.970077i \(-0.421934\pi\)
0.242799 + 0.970077i \(0.421934\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) − 6.77858i − 0.265674i
\(652\) 0 0
\(653\) 4.78361i 0.187197i 0.995610 + 0.0935987i \(0.0298371\pi\)
−0.995610 + 0.0935987i \(0.970163\pi\)
\(654\) 0 0
\(655\) −18.2743 −0.714036
\(656\) 0 0
\(657\) 16.9642 0.661835
\(658\) 0 0
\(659\) 34.4552i 1.34219i 0.741374 + 0.671093i \(0.234175\pi\)
−0.741374 + 0.671093i \(0.765825\pi\)
\(660\) 0 0
\(661\) − 39.9505i − 1.55389i −0.629567 0.776947i \(-0.716767\pi\)
0.629567 0.776947i \(-0.283233\pi\)
\(662\) 0 0
\(663\) −1.98549 −0.0771102
\(664\) 0 0
\(665\) 10.0079 0.388092
\(666\) 0 0
\(667\) − 32.0768i − 1.24202i
\(668\) 0 0
\(669\) 19.1729i 0.741268i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −10.8179 −0.417000 −0.208500 0.978022i \(-0.566858\pi\)
−0.208500 + 0.978022i \(0.566858\pi\)
\(674\) 0 0
\(675\) 13.9599i 0.537318i
\(676\) 0 0
\(677\) − 37.4282i − 1.43848i −0.694761 0.719241i \(-0.744490\pi\)
0.694761 0.719241i \(-0.255510\pi\)
\(678\) 0 0
\(679\) −23.1554 −0.888621
\(680\) 0 0
\(681\) 1.70142 0.0651987
\(682\) 0 0
\(683\) − 24.1362i − 0.923545i −0.886998 0.461772i \(-0.847214\pi\)
0.886998 0.461772i \(-0.152786\pi\)
\(684\) 0 0
\(685\) − 28.5051i − 1.08912i
\(686\) 0 0
\(687\) −30.3611 −1.15835
\(688\) 0 0
\(689\) −1.82204 −0.0694143
\(690\) 0 0
\(691\) − 44.8113i − 1.70470i −0.522969 0.852352i \(-0.675176\pi\)
0.522969 0.852352i \(-0.324824\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 10.6067 0.402334
\(696\) 0 0
\(697\) −21.5630 −0.816756
\(698\) 0 0
\(699\) − 3.17829i − 0.120214i
\(700\) 0 0
\(701\) − 22.9120i − 0.865376i −0.901544 0.432688i \(-0.857565\pi\)
0.901544 0.432688i \(-0.142435\pi\)
\(702\) 0 0
\(703\) 12.0967 0.456234
\(704\) 0 0
\(705\) 25.8969 0.975333
\(706\) 0 0
\(707\) − 28.7014i − 1.07943i
\(708\) 0 0
\(709\) − 39.8708i − 1.49738i −0.662920 0.748690i \(-0.730683\pi\)
0.662920 0.748690i \(-0.269317\pi\)
\(710\) 0 0
\(711\) 8.04515 0.301717
\(712\) 0 0
\(713\) −8.68889 −0.325402
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 20.3495i 0.759965i
\(718\) 0 0
\(719\) 36.2649 1.35245 0.676227 0.736693i \(-0.263614\pi\)
0.676227 + 0.736693i \(0.263614\pi\)
\(720\) 0 0
\(721\) 15.2765 0.568927
\(722\) 0 0
\(723\) 4.14856i 0.154287i
\(724\) 0 0
\(725\) 26.0067i 0.965864i
\(726\) 0 0
\(727\) −4.42926 −0.164272 −0.0821360 0.996621i \(-0.526174\pi\)
−0.0821360 + 0.996621i \(0.526174\pi\)
\(728\) 0 0
\(729\) −25.8133 −0.956046
\(730\) 0 0
\(731\) 17.3391i 0.641309i
\(732\) 0 0
\(733\) − 27.2599i − 1.00687i −0.864034 0.503434i \(-0.832070\pi\)
0.864034 0.503434i \(-0.167930\pi\)
\(734\) 0 0
\(735\) −7.14172 −0.263426
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) − 1.16933i − 0.0430146i −0.999769 0.0215073i \(-0.993153\pi\)
0.999769 0.0215073i \(-0.00684651\pi\)
\(740\) 0 0
\(741\) − 1.40291i − 0.0515372i
\(742\) 0 0
\(743\) 39.6565 1.45486 0.727429 0.686183i \(-0.240715\pi\)
0.727429 + 0.686183i \(0.240715\pi\)
\(744\) 0 0
\(745\) 6.33969 0.232268
\(746\) 0 0
\(747\) − 0.187870i − 0.00687380i
\(748\) 0 0
\(749\) 9.40165i 0.343529i
\(750\) 0 0
\(751\) 6.61284 0.241306 0.120653 0.992695i \(-0.461501\pi\)
0.120653 + 0.992695i \(0.461501\pi\)
\(752\) 0 0
\(753\) 0.444870 0.0162120
\(754\) 0 0
\(755\) 3.69242i 0.134381i
\(756\) 0 0
\(757\) 20.6836i 0.751759i 0.926668 + 0.375880i \(0.122659\pi\)
−0.926668 + 0.375880i \(0.877341\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −45.5490 −1.65115 −0.825575 0.564293i \(-0.809149\pi\)
−0.825575 + 0.564293i \(0.809149\pi\)
\(762\) 0 0
\(763\) − 19.0260i − 0.688788i
\(764\) 0 0
\(765\) 10.1997i 0.368770i
\(766\) 0 0
\(767\) 1.73413 0.0626157
\(768\) 0 0
\(769\) 19.1817 0.691711 0.345856 0.938288i \(-0.387589\pi\)
0.345856 + 0.938288i \(0.387589\pi\)
\(770\) 0 0
\(771\) − 0.542667i − 0.0195437i
\(772\) 0 0
\(773\) − 50.1410i − 1.80345i −0.432314 0.901723i \(-0.642303\pi\)
0.432314 0.901723i \(-0.357697\pi\)
\(774\) 0 0
\(775\) 7.04463 0.253050
\(776\) 0 0
\(777\) 8.58477 0.307977
\(778\) 0 0
\(779\) − 15.2360i − 0.545885i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) −58.2045 −2.08006
\(784\) 0 0
\(785\) 12.5697 0.448633
\(786\) 0 0
\(787\) − 22.8144i − 0.813246i −0.913596 0.406623i \(-0.866706\pi\)
0.913596 0.406623i \(-0.133294\pi\)
\(788\) 0 0
\(789\) − 3.02740i − 0.107778i
\(790\) 0 0
\(791\) −15.0430 −0.534866
\(792\) 0 0
\(793\) −3.51991 −0.124996
\(794\) 0 0
\(795\) − 11.5118i − 0.408283i
\(796\) 0 0
\(797\) 26.6673i 0.944604i 0.881437 + 0.472302i \(0.156577\pi\)
−0.881437 + 0.472302i \(0.843423\pi\)
\(798\) 0 0
\(799\) −60.9917 −2.15773
\(800\) 0 0
\(801\) 5.77144 0.203924
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) − 9.10403i − 0.320875i
\(806\) 0 0
\(807\) −29.6588 −1.04404
\(808\) 0 0
\(809\) 38.5665 1.35592 0.677962 0.735097i \(-0.262863\pi\)
0.677962 + 0.735097i \(0.262863\pi\)
\(810\) 0 0
\(811\) − 16.8283i − 0.590922i −0.955355 0.295461i \(-0.904527\pi\)
0.955355 0.295461i \(-0.0954733\pi\)
\(812\) 0 0
\(813\) 5.62954i 0.197437i
\(814\) 0 0
\(815\) −8.88299 −0.311157
\(816\) 0 0
\(817\) −12.2514 −0.428624
\(818\) 0 0
\(819\) 0.809515i 0.0282867i
\(820\) 0 0
\(821\) 1.25448i 0.0437816i 0.999760 + 0.0218908i \(0.00696862\pi\)
−0.999760 + 0.0218908i \(0.993031\pi\)
\(822\) 0 0
\(823\) −50.2585 −1.75190 −0.875950 0.482402i \(-0.839764\pi\)
−0.875950 + 0.482402i \(0.839764\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 23.6885i 0.823732i 0.911245 + 0.411866i \(0.135123\pi\)
−0.911245 + 0.411866i \(0.864877\pi\)
\(828\) 0 0
\(829\) 33.4106i 1.16040i 0.814475 + 0.580199i \(0.197025\pi\)
−0.814475 + 0.580199i \(0.802975\pi\)
\(830\) 0 0
\(831\) −8.06092 −0.279630
\(832\) 0 0
\(833\) 16.8200 0.582779
\(834\) 0 0
\(835\) − 28.5176i − 0.986892i
\(836\) 0 0
\(837\) 15.7663i 0.544963i
\(838\) 0 0
\(839\) −18.8019 −0.649113 −0.324557 0.945866i \(-0.605215\pi\)
−0.324557 + 0.945866i \(0.605215\pi\)
\(840\) 0 0
\(841\) −79.4321 −2.73904
\(842\) 0 0
\(843\) − 14.3878i − 0.495542i
\(844\) 0 0
\(845\) − 20.4010i − 0.701815i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −41.1374 −1.41183
\(850\) 0 0
\(851\) − 11.0041i − 0.377215i
\(852\) 0 0
\(853\) 43.9013i 1.50315i 0.659647 + 0.751575i \(0.270706\pi\)
−0.659647 + 0.751575i \(0.729294\pi\)
\(854\) 0 0
\(855\) −7.20688 −0.246470
\(856\) 0 0
\(857\) 35.4141 1.20972 0.604861 0.796331i \(-0.293229\pi\)
0.604861 + 0.796331i \(0.293229\pi\)
\(858\) 0 0
\(859\) − 36.4697i − 1.24433i −0.782886 0.622165i \(-0.786253\pi\)
0.782886 0.622165i \(-0.213747\pi\)
\(860\) 0 0
\(861\) − 10.8127i − 0.368495i
\(862\) 0 0
\(863\) −24.0325 −0.818075 −0.409037 0.912518i \(-0.634135\pi\)
−0.409037 + 0.912518i \(0.634135\pi\)
\(864\) 0 0
\(865\) −23.8369 −0.810479
\(866\) 0 0
\(867\) 7.67694i 0.260723i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) −3.53910 −0.119918
\(872\) 0 0
\(873\) 16.6745 0.564347
\(874\) 0 0
\(875\) 22.1584i 0.749090i
\(876\) 0 0
\(877\) 18.6541i 0.629904i 0.949108 + 0.314952i \(0.101988\pi\)
−0.949108 + 0.314952i \(0.898012\pi\)
\(878\) 0 0
\(879\) 9.85952 0.332553
\(880\) 0 0
\(881\) 32.4553 1.09345 0.546723 0.837314i \(-0.315875\pi\)
0.546723 + 0.837314i \(0.315875\pi\)
\(882\) 0 0
\(883\) 13.0200i 0.438157i 0.975707 + 0.219079i \(0.0703051\pi\)
−0.975707 + 0.219079i \(0.929695\pi\)
\(884\) 0 0
\(885\) 10.9564i 0.368294i
\(886\) 0 0
\(887\) 19.1455 0.642843 0.321422 0.946936i \(-0.395839\pi\)
0.321422 + 0.946936i \(0.395839\pi\)
\(888\) 0 0
\(889\) 24.3735 0.817460
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 43.0955i − 1.44214i
\(894\) 0 0
\(895\) 35.2564 1.17849
\(896\) 0 0
\(897\) −1.27620 −0.0426110
\(898\) 0 0
\(899\) 29.3718i 0.979605i
\(900\) 0 0
\(901\) 27.1124i 0.903245i
\(902\) 0 0
\(903\) −8.69462 −0.289339
\(904\) 0 0
\(905\) −18.2104 −0.605333
\(906\) 0 0
\(907\) − 53.3243i − 1.77060i −0.465017 0.885302i \(-0.653952\pi\)
0.465017 0.885302i \(-0.346048\pi\)
\(908\) 0 0
\(909\) 20.6683i 0.685525i
\(910\) 0 0
\(911\) −47.3265 −1.56800 −0.783999 0.620762i \(-0.786823\pi\)
−0.783999 + 0.620762i \(0.786823\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) − 22.2391i − 0.735202i
\(916\) 0 0
\(917\) 21.5818i 0.712695i
\(918\) 0 0
\(919\) 55.9089 1.84427 0.922133 0.386874i \(-0.126445\pi\)
0.922133 + 0.386874i \(0.126445\pi\)
\(920\) 0 0
\(921\) 4.59877 0.151535
\(922\) 0 0
\(923\) − 3.58657i − 0.118054i
\(924\) 0 0
\(925\) 8.92170i 0.293344i
\(926\) 0 0
\(927\) −11.0008 −0.361315
\(928\) 0 0
\(929\) 20.2505 0.664396 0.332198 0.943210i \(-0.392210\pi\)
0.332198 + 0.943210i \(0.392210\pi\)
\(930\) 0 0
\(931\) 11.8847i 0.389504i
\(932\) 0 0
\(933\) 0.100747i 0.00329830i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 40.6651 1.32847 0.664235 0.747524i \(-0.268757\pi\)
0.664235 + 0.747524i \(0.268757\pi\)
\(938\) 0 0
\(939\) − 11.5097i − 0.375606i
\(940\) 0 0
\(941\) 2.23992i 0.0730194i 0.999333 + 0.0365097i \(0.0116240\pi\)
−0.999333 + 0.0365097i \(0.988376\pi\)
\(942\) 0 0
\(943\) −13.8598 −0.451339
\(944\) 0 0
\(945\) −16.5196 −0.537382
\(946\) 0 0
\(947\) 14.7173i 0.478247i 0.970989 + 0.239123i \(0.0768601\pi\)
−0.970989 + 0.239123i \(0.923140\pi\)
\(948\) 0 0
\(949\) − 4.06115i − 0.131831i
\(950\) 0 0
\(951\) 31.4935 1.02125
\(952\) 0 0
\(953\) 18.3058 0.592984 0.296492 0.955035i \(-0.404183\pi\)
0.296492 + 0.955035i \(0.404183\pi\)
\(954\) 0 0
\(955\) − 17.0805i − 0.552712i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −33.6643 −1.08708
\(960\) 0 0
\(961\) −23.0438 −0.743349
\(962\) 0 0
\(963\) − 6.77028i − 0.218169i
\(964\) 0 0
\(965\) 14.3268i 0.461196i
\(966\) 0 0
\(967\) 7.98210 0.256687 0.128343 0.991730i \(-0.459034\pi\)
0.128343 + 0.991730i \(0.459034\pi\)
\(968\) 0 0
\(969\) −20.8756 −0.670620
\(970\) 0 0
\(971\) 35.5820i 1.14188i 0.820992 + 0.570940i \(0.193421\pi\)
−0.820992 + 0.570940i \(0.806579\pi\)
\(972\) 0 0
\(973\) − 12.5264i − 0.401578i
\(974\) 0 0
\(975\) 1.03469 0.0331367
\(976\) 0 0
\(977\) −38.5825 −1.23436 −0.617181 0.786821i \(-0.711726\pi\)
−0.617181 + 0.786821i \(0.711726\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 13.7009i 0.437437i
\(982\) 0 0
\(983\) −33.6443 −1.07309 −0.536543 0.843873i \(-0.680270\pi\)
−0.536543 + 0.843873i \(0.680270\pi\)
\(984\) 0 0
\(985\) −13.8279 −0.440592
\(986\) 0 0
\(987\) − 30.5841i − 0.973502i
\(988\) 0 0
\(989\) 11.1449i 0.354387i
\(990\) 0 0
\(991\) −34.6130 −1.09952 −0.549758 0.835324i \(-0.685280\pi\)
−0.549758 + 0.835324i \(0.685280\pi\)
\(992\) 0 0
\(993\) −31.1399 −0.988194
\(994\) 0 0
\(995\) 4.04309i 0.128174i
\(996\) 0 0
\(997\) 14.2720i 0.452000i 0.974127 + 0.226000i \(0.0725649\pi\)
−0.974127 + 0.226000i \(0.927435\pi\)
\(998\) 0 0
\(999\) −19.9673 −0.631737
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3872.2.c.i.1937.15 20
4.3 odd 2 968.2.c.i.485.17 20
8.3 odd 2 968.2.c.i.485.18 20
8.5 even 2 inner 3872.2.c.i.1937.6 20
11.2 odd 10 352.2.w.a.81.8 40
11.6 odd 10 352.2.w.a.113.3 40
11.10 odd 2 3872.2.c.h.1937.15 20
44.3 odd 10 968.2.o.d.493.6 40
44.7 even 10 968.2.o.j.269.3 40
44.15 odd 10 968.2.o.d.269.8 40
44.19 even 10 968.2.o.j.493.5 40
44.27 odd 10 968.2.o.i.245.3 40
44.31 odd 10 968.2.o.i.565.1 40
44.35 even 10 88.2.o.a.37.10 yes 40
44.39 even 10 88.2.o.a.69.8 yes 40
44.43 even 2 968.2.c.h.485.4 20
88.3 odd 10 968.2.o.d.493.8 40
88.13 odd 10 352.2.w.a.81.3 40
88.19 even 10 968.2.o.j.493.3 40
88.21 odd 2 3872.2.c.h.1937.6 20
88.27 odd 10 968.2.o.i.245.1 40
88.35 even 10 88.2.o.a.37.8 40
88.43 even 2 968.2.c.h.485.3 20
88.51 even 10 968.2.o.j.269.5 40
88.59 odd 10 968.2.o.d.269.6 40
88.61 odd 10 352.2.w.a.113.8 40
88.75 odd 10 968.2.o.i.565.3 40
88.83 even 10 88.2.o.a.69.10 yes 40
132.35 odd 10 792.2.br.b.37.1 40
132.83 odd 10 792.2.br.b.685.3 40
264.35 odd 10 792.2.br.b.37.3 40
264.83 odd 10 792.2.br.b.685.1 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.o.a.37.8 40 88.35 even 10
88.2.o.a.37.10 yes 40 44.35 even 10
88.2.o.a.69.8 yes 40 44.39 even 10
88.2.o.a.69.10 yes 40 88.83 even 10
352.2.w.a.81.3 40 88.13 odd 10
352.2.w.a.81.8 40 11.2 odd 10
352.2.w.a.113.3 40 11.6 odd 10
352.2.w.a.113.8 40 88.61 odd 10
792.2.br.b.37.1 40 132.35 odd 10
792.2.br.b.37.3 40 264.35 odd 10
792.2.br.b.685.1 40 264.83 odd 10
792.2.br.b.685.3 40 132.83 odd 10
968.2.c.h.485.3 20 88.43 even 2
968.2.c.h.485.4 20 44.43 even 2
968.2.c.i.485.17 20 4.3 odd 2
968.2.c.i.485.18 20 8.3 odd 2
968.2.o.d.269.6 40 88.59 odd 10
968.2.o.d.269.8 40 44.15 odd 10
968.2.o.d.493.6 40 44.3 odd 10
968.2.o.d.493.8 40 88.3 odd 10
968.2.o.i.245.1 40 88.27 odd 10
968.2.o.i.245.3 40 44.27 odd 10
968.2.o.i.565.1 40 44.31 odd 10
968.2.o.i.565.3 40 88.75 odd 10
968.2.o.j.269.3 40 44.7 even 10
968.2.o.j.269.5 40 88.51 even 10
968.2.o.j.493.3 40 88.19 even 10
968.2.o.j.493.5 40 44.19 even 10
3872.2.c.h.1937.6 20 88.21 odd 2
3872.2.c.h.1937.15 20 11.10 odd 2
3872.2.c.i.1937.6 20 8.5 even 2 inner
3872.2.c.i.1937.15 20 1.1 even 1 trivial