Properties

Label 968.2.c.i.485.18
Level $968$
Weight $2$
Character 968.485
Analytic conductor $7.730$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [968,2,Mod(485,968)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(968, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("968.485");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 968 = 2^{3} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 968.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.72951891566\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{18} - 2 x^{16} - 2 x^{15} - 4 x^{14} - 4 x^{13} + 12 x^{12} + 16 x^{11} + 32 x^{9} + \cdots + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 485.18
Root \(-1.30820 + 0.537231i\) of defining polynomial
Character \(\chi\) \(=\) 968.485
Dual form 968.2.c.i.485.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.30820 + 0.537231i) q^{2} +1.28633i q^{3} +(1.42276 + 1.40561i) q^{4} +1.58193i q^{5} +(-0.691057 + 1.68277i) q^{6} +1.86825 q^{7} +(1.10612 + 2.60317i) q^{8} +1.34535 q^{9} +(-0.849862 + 2.06948i) q^{10} +(-1.80808 + 1.83015i) q^{12} +0.322072i q^{13} +(2.44404 + 1.00368i) q^{14} -2.03488 q^{15} +(0.0485202 + 3.99971i) q^{16} -4.79250 q^{17} +(1.75999 + 0.722767i) q^{18} -3.38629i q^{19} +(-2.22357 + 2.25071i) q^{20} +2.40318i q^{21} +3.08044 q^{23} +(-3.34854 + 1.42284i) q^{24} +2.49750 q^{25} +(-0.173027 + 0.421335i) q^{26} +5.58956i q^{27} +(2.65808 + 2.62603i) q^{28} -10.4131i q^{29} +(-2.66203 - 1.09320i) q^{30} -2.82067 q^{31} +(-2.08529 + 5.25847i) q^{32} +(-6.26955 - 2.57468i) q^{34} +2.95543i q^{35} +(1.91412 + 1.89104i) q^{36} -3.57225i q^{37} +(1.81922 - 4.42993i) q^{38} -0.414291 q^{39} +(-4.11803 + 1.74980i) q^{40} +4.49931 q^{41} +(-1.29107 + 3.14384i) q^{42} -3.61796i q^{43} +2.12826i q^{45} +(4.02982 + 1.65491i) q^{46} -12.7265 q^{47} +(-5.14494 + 0.0624130i) q^{48} -3.50965 q^{49} +(3.26723 + 1.34174i) q^{50} -6.16474i q^{51} +(-0.452708 + 0.458233i) q^{52} +5.65725i q^{53} +(-3.00289 + 7.31225i) q^{54} +(2.06651 + 4.86337i) q^{56} +4.35588 q^{57} +(5.59423 - 13.6224i) q^{58} +5.38428i q^{59} +(-2.89516 - 2.86025i) q^{60} +10.9289i q^{61} +(-3.68999 - 1.51535i) q^{62} +2.51346 q^{63} +(-5.55299 + 5.75884i) q^{64} -0.509496 q^{65} -10.9885i q^{67} +(-6.81861 - 6.73639i) q^{68} +3.96246i q^{69} +(-1.58775 + 3.86629i) q^{70} -11.1359 q^{71} +(1.48812 + 3.50219i) q^{72} +12.6094 q^{73} +(1.91912 - 4.67321i) q^{74} +3.21261i q^{75} +(4.75980 - 4.81789i) q^{76} +(-0.541975 - 0.222570i) q^{78} -5.97994 q^{79} +(-6.32725 + 0.0767555i) q^{80} -3.15396 q^{81} +(5.88599 + 2.41717i) q^{82} -0.139643i q^{83} +(-3.37794 + 3.41917i) q^{84} -7.58140i q^{85} +(1.94368 - 4.73301i) q^{86} +13.3946 q^{87} +4.28990 q^{89} +(-1.14337 + 2.78418i) q^{90} +0.601711i q^{91} +(4.38274 + 4.32989i) q^{92} -3.62831i q^{93} +(-16.6488 - 6.83706i) q^{94} +5.35686 q^{95} +(-6.76413 - 2.68238i) q^{96} +12.3942 q^{97} +(-4.59132 - 1.88549i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 2 q^{4} + q^{6} - 10 q^{7} - 10 q^{9} + 10 q^{10} - 3 q^{12} - 4 q^{14} - 4 q^{15} + 10 q^{16} - 2 q^{17} + 5 q^{18} - 16 q^{20} - 4 q^{23} - 15 q^{24} - 2 q^{25} + 30 q^{26} + 14 q^{28} - 16 q^{30}+ \cdots + 72 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/968\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(727\) \(849\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.30820 + 0.537231i 0.925036 + 0.379880i
\(3\) 1.28633i 0.742663i 0.928500 + 0.371332i \(0.121099\pi\)
−0.928500 + 0.371332i \(0.878901\pi\)
\(4\) 1.42276 + 1.40561i 0.711382 + 0.702805i
\(5\) 1.58193i 0.707460i 0.935348 + 0.353730i \(0.115087\pi\)
−0.935348 + 0.353730i \(0.884913\pi\)
\(6\) −0.691057 + 1.68277i −0.282123 + 0.686990i
\(7\) 1.86825 0.706131 0.353066 0.935599i \(-0.385139\pi\)
0.353066 + 0.935599i \(0.385139\pi\)
\(8\) 1.10612 + 2.60317i 0.391073 + 0.920360i
\(9\) 1.34535 0.448452
\(10\) −0.849862 + 2.06948i −0.268750 + 0.654426i
\(11\) 0 0
\(12\) −1.80808 + 1.83015i −0.521947 + 0.528317i
\(13\) 0.322072i 0.0893268i 0.999002 + 0.0446634i \(0.0142215\pi\)
−0.999002 + 0.0446634i \(0.985778\pi\)
\(14\) 2.44404 + 1.00368i 0.653197 + 0.268245i
\(15\) −2.03488 −0.525404
\(16\) 0.0485202 + 3.99971i 0.0121300 + 0.999926i
\(17\) −4.79250 −1.16235 −0.581177 0.813778i \(-0.697407\pi\)
−0.581177 + 0.813778i \(0.697407\pi\)
\(18\) 1.75999 + 0.722767i 0.414834 + 0.170358i
\(19\) 3.38629i 0.776867i −0.921477 0.388434i \(-0.873016\pi\)
0.921477 0.388434i \(-0.126984\pi\)
\(20\) −2.22357 + 2.25071i −0.497206 + 0.503275i
\(21\) 2.40318i 0.524418i
\(22\) 0 0
\(23\) 3.08044 0.642316 0.321158 0.947026i \(-0.395928\pi\)
0.321158 + 0.947026i \(0.395928\pi\)
\(24\) −3.34854 + 1.42284i −0.683517 + 0.290435i
\(25\) 2.49750 0.499500
\(26\) −0.173027 + 0.421335i −0.0339335 + 0.0826305i
\(27\) 5.58956i 1.07571i
\(28\) 2.65808 + 2.62603i 0.502330 + 0.496273i
\(29\) 10.4131i 1.93366i −0.255422 0.966830i \(-0.582215\pi\)
0.255422 0.966830i \(-0.417785\pi\)
\(30\) −2.66203 1.09320i −0.486018 0.199591i
\(31\) −2.82067 −0.506607 −0.253303 0.967387i \(-0.581517\pi\)
−0.253303 + 0.967387i \(0.581517\pi\)
\(32\) −2.08529 + 5.25847i −0.368631 + 0.929576i
\(33\) 0 0
\(34\) −6.26955 2.57468i −1.07522 0.441555i
\(35\) 2.95543i 0.499560i
\(36\) 1.91412 + 1.89104i 0.319021 + 0.315174i
\(37\) 3.57225i 0.587274i −0.955917 0.293637i \(-0.905134\pi\)
0.955917 0.293637i \(-0.0948657\pi\)
\(38\) 1.81922 4.42993i 0.295116 0.718630i
\(39\) −0.414291 −0.0663397
\(40\) −4.11803 + 1.74980i −0.651118 + 0.276668i
\(41\) 4.49931 0.702674 0.351337 0.936249i \(-0.385727\pi\)
0.351337 + 0.936249i \(0.385727\pi\)
\(42\) −1.29107 + 3.14384i −0.199216 + 0.485105i
\(43\) 3.61796i 0.551734i −0.961196 0.275867i \(-0.911035\pi\)
0.961196 0.275867i \(-0.0889649\pi\)
\(44\) 0 0
\(45\) 2.12826i 0.317262i
\(46\) 4.02982 + 1.65491i 0.594165 + 0.244003i
\(47\) −12.7265 −1.85635 −0.928174 0.372147i \(-0.878622\pi\)
−0.928174 + 0.372147i \(0.878622\pi\)
\(48\) −5.14494 + 0.0624130i −0.742608 + 0.00900854i
\(49\) −3.50965 −0.501378
\(50\) 3.26723 + 1.34174i 0.462056 + 0.189750i
\(51\) 6.16474i 0.863237i
\(52\) −0.452708 + 0.458233i −0.0627793 + 0.0635455i
\(53\) 5.65725i 0.777083i 0.921431 + 0.388541i \(0.127021\pi\)
−0.921431 + 0.388541i \(0.872979\pi\)
\(54\) −3.00289 + 7.31225i −0.408641 + 0.995072i
\(55\) 0 0
\(56\) 2.06651 + 4.86337i 0.276149 + 0.649895i
\(57\) 4.35588 0.576951
\(58\) 5.59423 13.6224i 0.734558 1.78870i
\(59\) 5.38428i 0.700973i 0.936568 + 0.350487i \(0.113984\pi\)
−0.936568 + 0.350487i \(0.886016\pi\)
\(60\) −2.89516 2.86025i −0.373763 0.369257i
\(61\) 10.9289i 1.39931i 0.714482 + 0.699654i \(0.246662\pi\)
−0.714482 + 0.699654i \(0.753338\pi\)
\(62\) −3.68999 1.51535i −0.468630 0.192450i
\(63\) 2.51346 0.316666
\(64\) −5.55299 + 5.75884i −0.694124 + 0.719855i
\(65\) −0.509496 −0.0631951
\(66\) 0 0
\(67\) 10.9885i 1.34246i −0.741249 0.671230i \(-0.765766\pi\)
0.741249 0.671230i \(-0.234234\pi\)
\(68\) −6.81861 6.73639i −0.826878 0.816908i
\(69\) 3.96246i 0.477024i
\(70\) −1.58775 + 3.86629i −0.189773 + 0.462111i
\(71\) −11.1359 −1.32159 −0.660795 0.750566i \(-0.729781\pi\)
−0.660795 + 0.750566i \(0.729781\pi\)
\(72\) 1.48812 + 3.50219i 0.175377 + 0.412737i
\(73\) 12.6094 1.47582 0.737912 0.674897i \(-0.235812\pi\)
0.737912 + 0.674897i \(0.235812\pi\)
\(74\) 1.91912 4.67321i 0.223094 0.543250i
\(75\) 3.21261i 0.370961i
\(76\) 4.75980 4.81789i 0.545986 0.552650i
\(77\) 0 0
\(78\) −0.541975 0.222570i −0.0613666 0.0252011i
\(79\) −5.97994 −0.672796 −0.336398 0.941720i \(-0.609209\pi\)
−0.336398 + 0.941720i \(0.609209\pi\)
\(80\) −6.32725 + 0.0767555i −0.707408 + 0.00858152i
\(81\) −3.15396 −0.350440
\(82\) 5.88599 + 2.41717i 0.649999 + 0.266932i
\(83\) 0.139643i 0.0153279i −0.999971 0.00766393i \(-0.997560\pi\)
0.999971 0.00766393i \(-0.00243953\pi\)
\(84\) −3.37794 + 3.41917i −0.368563 + 0.373062i
\(85\) 7.58140i 0.822318i
\(86\) 1.94368 4.73301i 0.209593 0.510373i
\(87\) 13.3946 1.43606
\(88\) 0 0
\(89\) 4.28990 0.454729 0.227364 0.973810i \(-0.426989\pi\)
0.227364 + 0.973810i \(0.426989\pi\)
\(90\) −1.14337 + 2.78418i −0.120521 + 0.293478i
\(91\) 0.601711i 0.0630765i
\(92\) 4.38274 + 4.32989i 0.456932 + 0.451423i
\(93\) 3.62831i 0.376238i
\(94\) −16.6488 6.83706i −1.71719 0.705189i
\(95\) 5.35686 0.549602
\(96\) −6.76413 2.68238i −0.690362 0.273769i
\(97\) 12.3942 1.25844 0.629218 0.777229i \(-0.283375\pi\)
0.629218 + 0.777229i \(0.283375\pi\)
\(98\) −4.59132 1.88549i −0.463793 0.190464i
\(99\) 0 0
\(100\) 3.55336 + 3.51051i 0.355336 + 0.351051i
\(101\) 15.3627i 1.52865i −0.644831 0.764325i \(-0.723072\pi\)
0.644831 0.764325i \(-0.276928\pi\)
\(102\) 3.31189 8.06471i 0.327926 0.798525i
\(103\) 8.17691 0.805695 0.402848 0.915267i \(-0.368020\pi\)
0.402848 + 0.915267i \(0.368020\pi\)
\(104\) −0.838409 + 0.356251i −0.0822128 + 0.0349333i
\(105\) −3.80166 −0.371005
\(106\) −3.03925 + 7.40080i −0.295198 + 0.718829i
\(107\) 5.03234i 0.486494i −0.969964 0.243247i \(-0.921787\pi\)
0.969964 0.243247i \(-0.0782126\pi\)
\(108\) −7.85674 + 7.95263i −0.756015 + 0.765242i
\(109\) 10.1839i 0.975439i −0.873000 0.487720i \(-0.837829\pi\)
0.873000 0.487720i \(-0.162171\pi\)
\(110\) 0 0
\(111\) 4.59509 0.436147
\(112\) 0.0906477 + 7.47244i 0.00856541 + 0.706079i
\(113\) 8.05191 0.757460 0.378730 0.925507i \(-0.376361\pi\)
0.378730 + 0.925507i \(0.376361\pi\)
\(114\) 5.69836 + 2.34012i 0.533700 + 0.219172i
\(115\) 4.87303i 0.454413i
\(116\) 14.6367 14.8154i 1.35899 1.37557i
\(117\) 0.433302i 0.0400588i
\(118\) −2.89260 + 7.04370i −0.266286 + 0.648425i
\(119\) −8.95359 −0.820774
\(120\) −2.25083 5.29715i −0.205471 0.483561i
\(121\) 0 0
\(122\) −5.87137 + 14.2972i −0.531569 + 1.29441i
\(123\) 5.78760i 0.521850i
\(124\) −4.01315 3.96476i −0.360391 0.356046i
\(125\) 11.8605i 1.06084i
\(126\) 3.28810 + 1.35031i 0.292927 + 0.120295i
\(127\) 13.0462 1.15766 0.578830 0.815448i \(-0.303510\pi\)
0.578830 + 0.815448i \(0.303510\pi\)
\(128\) −10.3582 + 4.55046i −0.915548 + 0.402208i
\(129\) 4.65389 0.409752
\(130\) −0.666521 0.273717i −0.0584578 0.0240066i
\(131\) 11.5519i 1.00930i −0.863325 0.504648i \(-0.831622\pi\)
0.863325 0.504648i \(-0.168378\pi\)
\(132\) 0 0
\(133\) 6.32642i 0.548570i
\(134\) 5.90338 14.3752i 0.509974 1.24182i
\(135\) −8.84229 −0.761023
\(136\) −5.30109 12.4757i −0.454565 1.06978i
\(137\) 18.0192 1.53948 0.769742 0.638355i \(-0.220385\pi\)
0.769742 + 0.638355i \(0.220385\pi\)
\(138\) −2.12876 + 5.18368i −0.181212 + 0.441264i
\(139\) 6.70490i 0.568702i 0.958720 + 0.284351i \(0.0917781\pi\)
−0.958720 + 0.284351i \(0.908222\pi\)
\(140\) −4.15419 + 4.20489i −0.351093 + 0.355378i
\(141\) 16.3705i 1.37864i
\(142\) −14.5680 5.98257i −1.22252 0.502046i
\(143\) 0 0
\(144\) 0.0652769 + 5.38102i 0.00543974 + 0.448419i
\(145\) 16.4727 1.36799
\(146\) 16.4956 + 6.77419i 1.36519 + 0.560636i
\(147\) 4.51457i 0.372355i
\(148\) 5.02119 5.08247i 0.412739 0.417776i
\(149\) 4.00757i 0.328313i −0.986434 0.164156i \(-0.947510\pi\)
0.986434 0.164156i \(-0.0524902\pi\)
\(150\) −1.72592 + 4.20273i −0.140920 + 0.343152i
\(151\) 2.33413 0.189948 0.0949742 0.995480i \(-0.469723\pi\)
0.0949742 + 0.995480i \(0.469723\pi\)
\(152\) 8.81508 3.74564i 0.714997 0.303812i
\(153\) −6.44762 −0.521259
\(154\) 0 0
\(155\) 4.46210i 0.358404i
\(156\) −0.589439 0.582332i −0.0471929 0.0466239i
\(157\) 7.94584i 0.634147i −0.948401 0.317073i \(-0.897300\pi\)
0.948401 0.317073i \(-0.102700\pi\)
\(158\) −7.82295 3.21261i −0.622361 0.255582i
\(159\) −7.27709 −0.577111
\(160\) −8.31853 3.29878i −0.657638 0.260792i
\(161\) 5.75502 0.453559
\(162\) −4.12600 1.69440i −0.324169 0.133125i
\(163\) 5.61529i 0.439823i −0.975520 0.219912i \(-0.929423\pi\)
0.975520 0.219912i \(-0.0705769\pi\)
\(164\) 6.40146 + 6.32428i 0.499870 + 0.493843i
\(165\) 0 0
\(166\) 0.0750208 0.182681i 0.00582275 0.0141788i
\(167\) −18.0271 −1.39498 −0.697489 0.716595i \(-0.745700\pi\)
−0.697489 + 0.716595i \(0.745700\pi\)
\(168\) −6.25590 + 2.65821i −0.482653 + 0.205085i
\(169\) 12.8963 0.992021
\(170\) 4.07297 9.91797i 0.312382 0.760674i
\(171\) 4.55576i 0.348387i
\(172\) 5.08544 5.14751i 0.387761 0.392494i
\(173\) 15.0682i 1.14562i 0.819689 + 0.572809i \(0.194146\pi\)
−0.819689 + 0.572809i \(0.805854\pi\)
\(174\) 17.5229 + 7.19603i 1.32840 + 0.545529i
\(175\) 4.66595 0.352713
\(176\) 0 0
\(177\) −6.92596 −0.520587
\(178\) 5.61204 + 2.30467i 0.420641 + 0.172742i
\(179\) 22.2870i 1.66581i 0.553419 + 0.832903i \(0.313323\pi\)
−0.553419 + 0.832903i \(0.686677\pi\)
\(180\) −2.99150 + 3.02801i −0.222973 + 0.225694i
\(181\) 11.5115i 0.855643i 0.903863 + 0.427822i \(0.140719\pi\)
−0.903863 + 0.427822i \(0.859281\pi\)
\(182\) −0.323258 + 0.787158i −0.0239615 + 0.0583480i
\(183\) −14.0582 −1.03921
\(184\) 3.40734 + 8.01891i 0.251192 + 0.591162i
\(185\) 5.65104 0.415473
\(186\) 1.94924 4.74655i 0.142925 0.348034i
\(187\) 0 0
\(188\) −18.1068 17.8885i −1.32057 1.30465i
\(189\) 10.4427i 0.759594i
\(190\) 7.00784 + 2.87787i 0.508402 + 0.208783i
\(191\) −10.7973 −0.781262 −0.390631 0.920547i \(-0.627743\pi\)
−0.390631 + 0.920547i \(0.627743\pi\)
\(192\) −7.40777 7.14298i −0.534610 0.515500i
\(193\) −9.05654 −0.651904 −0.325952 0.945386i \(-0.605685\pi\)
−0.325952 + 0.945386i \(0.605685\pi\)
\(194\) 16.2140 + 6.65853i 1.16410 + 0.478054i
\(195\) 0.655379i 0.0469327i
\(196\) −4.99341 4.93320i −0.356672 0.352371i
\(197\) 8.74114i 0.622780i 0.950282 + 0.311390i \(0.100795\pi\)
−0.950282 + 0.311390i \(0.899205\pi\)
\(198\) 0 0
\(199\) 2.55580 0.181176 0.0905878 0.995888i \(-0.471125\pi\)
0.0905878 + 0.995888i \(0.471125\pi\)
\(200\) 2.76254 + 6.50142i 0.195341 + 0.459720i
\(201\) 14.1349 0.996996
\(202\) 8.25335 20.0975i 0.580703 1.41406i
\(203\) 19.4542i 1.36542i
\(204\) 8.66522 8.77098i 0.606687 0.614091i
\(205\) 7.11759i 0.497114i
\(206\) 10.6970 + 4.39289i 0.745297 + 0.306067i
\(207\) 4.14428 0.288048
\(208\) −1.28819 + 0.0156270i −0.0893202 + 0.00108354i
\(209\) 0 0
\(210\) −4.97333 2.04237i −0.343192 0.140937i
\(211\) 3.31568i 0.228261i −0.993466 0.114130i \(-0.963592\pi\)
0.993466 0.114130i \(-0.0364082\pi\)
\(212\) −7.95189 + 8.04893i −0.546138 + 0.552803i
\(213\) 14.3245i 0.981497i
\(214\) 2.70353 6.58329i 0.184809 0.450025i
\(215\) 5.72335 0.390330
\(216\) −14.5506 + 6.18273i −0.990042 + 0.420681i
\(217\) −5.26971 −0.357731
\(218\) 5.47110 13.3225i 0.370550 0.902316i
\(219\) 16.2199i 1.09604i
\(220\) 0 0
\(221\) 1.54353i 0.103829i
\(222\) 6.01129 + 2.46863i 0.403451 + 0.165683i
\(223\) −14.9051 −0.998121 −0.499061 0.866567i \(-0.666322\pi\)
−0.499061 + 0.866567i \(0.666322\pi\)
\(224\) −3.89585 + 9.82413i −0.260302 + 0.656403i
\(225\) 3.36003 0.224002
\(226\) 10.5335 + 4.32574i 0.700677 + 0.287744i
\(227\) 1.32270i 0.0877904i −0.999036 0.0438952i \(-0.986023\pi\)
0.999036 0.0438952i \(-0.0139768\pi\)
\(228\) 6.19740 + 6.12267i 0.410433 + 0.405484i
\(229\) 23.6029i 1.55972i −0.625953 0.779861i \(-0.715290\pi\)
0.625953 0.779861i \(-0.284710\pi\)
\(230\) −2.61795 + 6.37489i −0.172622 + 0.420348i
\(231\) 0 0
\(232\) 27.1070 11.5181i 1.77966 0.756201i
\(233\) −2.47082 −0.161869 −0.0809343 0.996719i \(-0.525790\pi\)
−0.0809343 + 0.996719i \(0.525790\pi\)
\(234\) −0.232783 + 0.566844i −0.0152175 + 0.0370558i
\(235\) 20.1324i 1.31329i
\(236\) −7.56820 + 7.66056i −0.492648 + 0.498660i
\(237\) 7.69218i 0.499661i
\(238\) −11.7131 4.81015i −0.759245 0.311796i
\(239\) −15.8198 −1.02330 −0.511648 0.859195i \(-0.670965\pi\)
−0.511648 + 0.859195i \(0.670965\pi\)
\(240\) −0.0987329 8.13893i −0.00637318 0.525366i
\(241\) 3.22511 0.207748 0.103874 0.994590i \(-0.466876\pi\)
0.103874 + 0.994590i \(0.466876\pi\)
\(242\) 0 0
\(243\) 12.7117i 0.815453i
\(244\) −15.3618 + 15.5493i −0.983441 + 0.995443i
\(245\) 5.55201i 0.354705i
\(246\) −3.10928 + 7.57133i −0.198240 + 0.482730i
\(247\) 1.09063 0.0693951
\(248\) −3.12000 7.34268i −0.198120 0.466261i
\(249\) 0.179628 0.0113834
\(250\) −6.37184 + 15.5159i −0.402990 + 0.981312i
\(251\) 0.345844i 0.0218295i −0.999940 0.0109147i \(-0.996526\pi\)
0.999940 0.0109147i \(-0.00347434\pi\)
\(252\) 3.57606 + 3.53294i 0.225270 + 0.222554i
\(253\) 0 0
\(254\) 17.0670 + 7.00881i 1.07088 + 0.439772i
\(255\) 9.75218 0.610705
\(256\) −15.9953 + 0.388133i −0.999706 + 0.0242583i
\(257\) −0.421872 −0.0263157 −0.0131578 0.999913i \(-0.504188\pi\)
−0.0131578 + 0.999913i \(0.504188\pi\)
\(258\) 6.08821 + 2.50022i 0.379036 + 0.155657i
\(259\) 6.67385i 0.414693i
\(260\) −0.724892 0.716152i −0.0449559 0.0444139i
\(261\) 14.0093i 0.867153i
\(262\) 6.20605 15.1122i 0.383411 0.933634i
\(263\) 2.35352 0.145124 0.0725621 0.997364i \(-0.476882\pi\)
0.0725621 + 0.997364i \(0.476882\pi\)
\(264\) 0 0
\(265\) −8.94936 −0.549755
\(266\) 3.39875 8.27621i 0.208391 0.507447i
\(267\) 5.51823i 0.337710i
\(268\) 15.4456 15.6341i 0.943488 0.955003i
\(269\) 23.0569i 1.40580i −0.711287 0.702901i \(-0.751888\pi\)
0.711287 0.702901i \(-0.248112\pi\)
\(270\) −11.5675 4.75035i −0.703973 0.289097i
\(271\) −4.37644 −0.265850 −0.132925 0.991126i \(-0.542437\pi\)
−0.132925 + 0.991126i \(0.542437\pi\)
\(272\) −0.232533 19.1686i −0.0140994 1.16227i
\(273\) −0.773999 −0.0468446
\(274\) 23.5727 + 9.68048i 1.42408 + 0.584819i
\(275\) 0 0
\(276\) −5.56967 + 5.63765i −0.335255 + 0.339347i
\(277\) 6.26661i 0.376524i −0.982119 0.188262i \(-0.939715\pi\)
0.982119 0.188262i \(-0.0602854\pi\)
\(278\) −3.60208 + 8.77133i −0.216038 + 0.526070i
\(279\) −3.79480 −0.227189
\(280\) −7.69350 + 3.26907i −0.459775 + 0.195364i
\(281\) −11.1852 −0.667250 −0.333625 0.942706i \(-0.608272\pi\)
−0.333625 + 0.942706i \(0.608272\pi\)
\(282\) 8.79472 21.4158i 0.523718 1.27529i
\(283\) 31.9805i 1.90104i 0.310662 + 0.950521i \(0.399449\pi\)
−0.310662 + 0.950521i \(0.600551\pi\)
\(284\) −15.8438 15.6528i −0.940157 0.928821i
\(285\) 6.89069i 0.408169i
\(286\) 0 0
\(287\) 8.40583 0.496180
\(288\) −2.80546 + 7.07451i −0.165313 + 0.416870i
\(289\) 5.96810 0.351065
\(290\) 21.5496 + 8.84967i 1.26544 + 0.519671i
\(291\) 15.9430i 0.934594i
\(292\) 17.9403 + 17.7240i 1.04987 + 1.03722i
\(293\) 7.66484i 0.447785i 0.974614 + 0.223892i \(0.0718764\pi\)
−0.974614 + 0.223892i \(0.928124\pi\)
\(294\) 2.42537 5.90595i 0.141450 0.344442i
\(295\) −8.51754 −0.495911
\(296\) 9.29917 3.95134i 0.540503 0.229667i
\(297\) 0 0
\(298\) 2.15299 5.24269i 0.124719 0.303701i
\(299\) 0.992124i 0.0573760i
\(300\) −4.51568 + 4.57079i −0.260713 + 0.263895i
\(301\) 6.75925i 0.389597i
\(302\) 3.05350 + 1.25397i 0.175709 + 0.0721576i
\(303\) 19.7616 1.13527
\(304\) 13.5441 0.164303i 0.776810 0.00942343i
\(305\) −17.2888 −0.989954
\(306\) −8.43476 3.46386i −0.482183 0.198016i
\(307\) 3.57511i 0.204042i −0.994782 0.102021i \(-0.967469\pi\)
0.994782 0.102021i \(-0.0325309\pi\)
\(308\) 0 0
\(309\) 10.5182i 0.598360i
\(310\) 2.39718 5.83730i 0.136151 0.331537i
\(311\) −0.0783210 −0.00444118 −0.00222059 0.999998i \(-0.500707\pi\)
−0.00222059 + 0.999998i \(0.500707\pi\)
\(312\) −0.458256 1.07847i −0.0259437 0.0610564i
\(313\) −8.94774 −0.505756 −0.252878 0.967498i \(-0.581377\pi\)
−0.252878 + 0.967498i \(0.581377\pi\)
\(314\) 4.26875 10.3947i 0.240900 0.586608i
\(315\) 3.97611i 0.224028i
\(316\) −8.50805 8.40547i −0.478615 0.472845i
\(317\) 24.4832i 1.37512i 0.726129 + 0.687558i \(0.241317\pi\)
−0.726129 + 0.687558i \(0.758683\pi\)
\(318\) −9.51987 3.90948i −0.533848 0.219233i
\(319\) 0 0
\(320\) −9.11008 8.78444i −0.509269 0.491065i
\(321\) 6.47324 0.361301
\(322\) 7.52871 + 3.09178i 0.419559 + 0.172298i
\(323\) 16.2288i 0.902994i
\(324\) −4.48734 4.43323i −0.249297 0.246291i
\(325\) 0.804377i 0.0446188i
\(326\) 3.01671 7.34591i 0.167080 0.406852i
\(327\) 13.0998 0.724423
\(328\) 4.97678 + 11.7125i 0.274797 + 0.646713i
\(329\) −23.7762 −1.31083
\(330\) 0 0
\(331\) 24.2083i 1.33061i 0.746572 + 0.665305i \(0.231698\pi\)
−0.746572 + 0.665305i \(0.768302\pi\)
\(332\) 0.196284 0.198680i 0.0107725 0.0109040i
\(333\) 4.80594i 0.263364i
\(334\) −23.5830 9.68472i −1.29041 0.529924i
\(335\) 17.3830 0.949737
\(336\) −9.61203 + 0.116603i −0.524379 + 0.00636121i
\(337\) −22.3046 −1.21501 −0.607505 0.794315i \(-0.707830\pi\)
−0.607505 + 0.794315i \(0.707830\pi\)
\(338\) 16.8709 + 6.92828i 0.917655 + 0.376849i
\(339\) 10.3574i 0.562537i
\(340\) 10.6565 10.7865i 0.577929 0.584983i
\(341\) 0 0
\(342\) 2.44749 5.95983i 0.132345 0.322271i
\(343\) −19.6346 −1.06017
\(344\) 9.41817 4.00190i 0.507794 0.215768i
\(345\) −6.26833 −0.337475
\(346\) −8.09514 + 19.7123i −0.435197 + 1.05974i
\(347\) 16.8395i 0.903991i −0.892020 0.451996i \(-0.850712\pi\)
0.892020 0.451996i \(-0.149288\pi\)
\(348\) 19.0574 + 18.8277i 1.02159 + 1.00927i
\(349\) 5.97392i 0.319777i 0.987135 + 0.159888i \(0.0511134\pi\)
−0.987135 + 0.159888i \(0.948887\pi\)
\(350\) 6.10399 + 2.50670i 0.326272 + 0.133989i
\(351\) −1.80024 −0.0960899
\(352\) 0 0
\(353\) −6.69469 −0.356322 −0.178161 0.984001i \(-0.557015\pi\)
−0.178161 + 0.984001i \(0.557015\pi\)
\(354\) −9.06053 3.72084i −0.481562 0.197761i
\(355\) 17.6162i 0.934973i
\(356\) 6.10353 + 6.02993i 0.323486 + 0.319586i
\(357\) 11.5173i 0.609559i
\(358\) −11.9733 + 29.1558i −0.632806 + 1.54093i
\(359\) −20.1204 −1.06191 −0.530957 0.847399i \(-0.678167\pi\)
−0.530957 + 0.847399i \(0.678167\pi\)
\(360\) −5.54021 + 2.35411i −0.291995 + 0.124072i
\(361\) 7.53307 0.396477
\(362\) −6.18434 + 15.0593i −0.325042 + 0.791501i
\(363\) 0 0
\(364\) −0.845771 + 0.856094i −0.0443305 + 0.0448715i
\(365\) 19.9472i 1.04409i
\(366\) −18.3909 7.55252i −0.961310 0.394777i
\(367\) 7.45942 0.389378 0.194689 0.980865i \(-0.437630\pi\)
0.194689 + 0.980865i \(0.437630\pi\)
\(368\) 0.149463 + 12.3208i 0.00779132 + 0.642268i
\(369\) 6.05317 0.315115
\(370\) 7.39268 + 3.03592i 0.384327 + 0.157830i
\(371\) 10.5691i 0.548723i
\(372\) 5.09999 5.16223i 0.264422 0.267649i
\(373\) 1.53907i 0.0796902i −0.999206 0.0398451i \(-0.987314\pi\)
0.999206 0.0398451i \(-0.0126864\pi\)
\(374\) 0 0
\(375\) −15.2565 −0.787844
\(376\) −14.0770 33.1292i −0.725967 1.70851i
\(377\) 3.35376 0.172728
\(378\) −5.61014 + 13.6611i −0.288554 + 0.702651i
\(379\) 5.35013i 0.274818i 0.990514 + 0.137409i \(0.0438774\pi\)
−0.990514 + 0.137409i \(0.956123\pi\)
\(380\) 7.62156 + 7.52966i 0.390978 + 0.386263i
\(381\) 16.7817i 0.859751i
\(382\) −14.1250 5.80063i −0.722696 0.296786i
\(383\) −9.59330 −0.490195 −0.245097 0.969498i \(-0.578820\pi\)
−0.245097 + 0.969498i \(0.578820\pi\)
\(384\) −5.85340 13.3241i −0.298705 0.679944i
\(385\) 0 0
\(386\) −11.8478 4.86546i −0.603035 0.247645i
\(387\) 4.86744i 0.247426i
\(388\) 17.6340 + 17.4213i 0.895229 + 0.884435i
\(389\) 11.2345i 0.569614i 0.958585 + 0.284807i \(0.0919294\pi\)
−0.958585 + 0.284807i \(0.908071\pi\)
\(390\) 0.352090 0.857366i 0.0178288 0.0434144i
\(391\) −14.7630 −0.746598
\(392\) −3.88210 9.13621i −0.196075 0.461449i
\(393\) 14.8596 0.749566
\(394\) −4.69601 + 11.4351i −0.236582 + 0.576094i
\(395\) 9.45984i 0.475976i
\(396\) 0 0
\(397\) 9.83583i 0.493646i −0.969061 0.246823i \(-0.920613\pi\)
0.969061 0.246823i \(-0.0793866\pi\)
\(398\) 3.34349 + 1.37305i 0.167594 + 0.0688250i
\(399\) 8.13787 0.407403
\(400\) 0.121179 + 9.98927i 0.00605896 + 0.499464i
\(401\) 10.7477 0.536714 0.268357 0.963319i \(-0.413519\pi\)
0.268357 + 0.963319i \(0.413519\pi\)
\(402\) 18.4912 + 7.59369i 0.922257 + 0.378739i
\(403\) 0.908459i 0.0452536i
\(404\) 21.5940 21.8576i 1.07434 1.08745i
\(405\) 4.98933i 0.247922i
\(406\) 10.4514 25.4500i 0.518695 1.26306i
\(407\) 0 0
\(408\) 16.0479 6.81895i 0.794488 0.337588i
\(409\) 6.33056 0.313026 0.156513 0.987676i \(-0.449975\pi\)
0.156513 + 0.987676i \(0.449975\pi\)
\(410\) −3.82379 + 9.31122i −0.188844 + 0.459848i
\(411\) 23.1786i 1.14332i
\(412\) 11.6338 + 11.4936i 0.573157 + 0.566247i
\(413\) 10.0592i 0.494979i
\(414\) 5.42154 + 2.22644i 0.266454 + 0.109423i
\(415\) 0.220906 0.0108438
\(416\) −1.69361 0.671615i −0.0830360 0.0329287i
\(417\) −8.62471 −0.422354
\(418\) 0 0
\(419\) 8.63496i 0.421846i −0.977503 0.210923i \(-0.932353\pi\)
0.977503 0.210923i \(-0.0676469\pi\)
\(420\) −5.40888 5.34366i −0.263926 0.260744i
\(421\) 29.4762i 1.43658i −0.695743 0.718291i \(-0.744925\pi\)
0.695743 0.718291i \(-0.255075\pi\)
\(422\) 1.78129 4.33757i 0.0867117 0.211149i
\(423\) −17.1216 −0.832482
\(424\) −14.7268 + 6.25760i −0.715196 + 0.303896i
\(425\) −11.9693 −0.580596
\(426\) 7.69556 18.7392i 0.372851 0.907920i
\(427\) 20.4180i 0.988095i
\(428\) 7.07350 7.15983i 0.341911 0.346083i
\(429\) 0 0
\(430\) 7.48728 + 3.07477i 0.361069 + 0.148278i
\(431\) 21.6684 1.04373 0.521864 0.853029i \(-0.325237\pi\)
0.521864 + 0.853029i \(0.325237\pi\)
\(432\) −22.3566 + 0.271207i −1.07563 + 0.0130484i
\(433\) −11.5153 −0.553392 −0.276696 0.960957i \(-0.589240\pi\)
−0.276696 + 0.960957i \(0.589240\pi\)
\(434\) −6.89382 2.83105i −0.330914 0.135895i
\(435\) 21.1894i 1.01595i
\(436\) 14.3146 14.4893i 0.685544 0.693910i
\(437\) 10.4312i 0.498994i
\(438\) −8.71384 + 21.2188i −0.416363 + 1.01388i
\(439\) −35.9563 −1.71610 −0.858049 0.513567i \(-0.828324\pi\)
−0.858049 + 0.513567i \(0.828324\pi\)
\(440\) 0 0
\(441\) −4.72172 −0.224844
\(442\) 0.829235 2.01925i 0.0394427 0.0960458i
\(443\) 27.8156i 1.32156i −0.750581 0.660779i \(-0.770226\pi\)
0.750581 0.660779i \(-0.229774\pi\)
\(444\) 6.53773 + 6.45891i 0.310267 + 0.306526i
\(445\) 6.78632i 0.321702i
\(446\) −19.4989 8.00750i −0.923298 0.379166i
\(447\) 5.15506 0.243826
\(448\) −10.3744 + 10.7589i −0.490143 + 0.508312i
\(449\) −13.0847 −0.617505 −0.308753 0.951142i \(-0.599912\pi\)
−0.308753 + 0.951142i \(0.599912\pi\)
\(450\) 4.39558 + 1.80511i 0.207210 + 0.0850938i
\(451\) 0 0
\(452\) 11.4560 + 11.3178i 0.538843 + 0.532346i
\(453\) 3.00246i 0.141068i
\(454\) 0.710593 1.73035i 0.0333498 0.0812092i
\(455\) −0.951864 −0.0446241
\(456\) 4.81813 + 11.3391i 0.225630 + 0.531002i
\(457\) 6.63015 0.310145 0.155073 0.987903i \(-0.450439\pi\)
0.155073 + 0.987903i \(0.450439\pi\)
\(458\) 12.6802 30.8772i 0.592507 1.44280i
\(459\) 26.7880i 1.25036i
\(460\) −6.84958 + 6.93318i −0.319364 + 0.323261i
\(461\) 8.43029i 0.392638i 0.980540 + 0.196319i \(0.0628988\pi\)
−0.980540 + 0.196319i \(0.937101\pi\)
\(462\) 0 0
\(463\) 9.16056 0.425727 0.212864 0.977082i \(-0.431721\pi\)
0.212864 + 0.977082i \(0.431721\pi\)
\(464\) 41.6492 0.505244i 1.93352 0.0234554i
\(465\) 5.73973 0.266173
\(466\) −3.23232 1.32740i −0.149734 0.0614907i
\(467\) 11.5736i 0.535560i −0.963480 0.267780i \(-0.913710\pi\)
0.963480 0.267780i \(-0.0862900\pi\)
\(468\) −0.609053 + 0.616486i −0.0281535 + 0.0284971i
\(469\) 20.5293i 0.947954i
\(470\) 10.8157 26.3371i 0.498893 1.21484i
\(471\) 10.2210 0.470957
\(472\) −14.0162 + 5.95566i −0.645148 + 0.274132i
\(473\) 0 0
\(474\) 4.13248 10.0629i 0.189811 0.462204i
\(475\) 8.45726i 0.388046i
\(476\) −12.7389 12.5853i −0.583884 0.576844i
\(477\) 7.61101i 0.348484i
\(478\) −20.6954 8.49888i −0.946586 0.388730i
\(479\) −19.1582 −0.875360 −0.437680 0.899131i \(-0.644200\pi\)
−0.437680 + 0.899131i \(0.644200\pi\)
\(480\) 4.24333 10.7004i 0.193680 0.488403i
\(481\) 1.15052 0.0524593
\(482\) 4.21909 + 1.73263i 0.192174 + 0.0789192i
\(483\) 7.40286i 0.336842i
\(484\) 0 0
\(485\) 19.6067i 0.890293i
\(486\) −6.82910 + 16.6294i −0.309774 + 0.754323i
\(487\) 42.4387 1.92308 0.961540 0.274664i \(-0.0885667\pi\)
0.961540 + 0.274664i \(0.0885667\pi\)
\(488\) −28.4499 + 12.0887i −1.28787 + 0.547231i
\(489\) 7.22312 0.326641
\(490\) 2.98272 7.26313i 0.134745 0.328115i
\(491\) 39.2592i 1.77174i 0.463930 + 0.885872i \(0.346439\pi\)
−0.463930 + 0.885872i \(0.653561\pi\)
\(492\) −8.13511 + 8.23439i −0.366759 + 0.371235i
\(493\) 49.9047i 2.24759i
\(494\) 1.42676 + 0.585920i 0.0641929 + 0.0263618i
\(495\) 0 0
\(496\) −0.136859 11.2818i −0.00614517 0.506570i
\(497\) −20.8047 −0.933217
\(498\) 0.234988 + 0.0965016i 0.0105301 + 0.00432434i
\(499\) 22.6637i 1.01457i −0.861779 0.507284i \(-0.830649\pi\)
0.861779 0.507284i \(-0.169351\pi\)
\(500\) −16.6713 + 16.8747i −0.745561 + 0.754660i
\(501\) 23.1888i 1.03600i
\(502\) 0.185798 0.452433i 0.00829259 0.0201931i
\(503\) −15.5389 −0.692847 −0.346424 0.938078i \(-0.612604\pi\)
−0.346424 + 0.938078i \(0.612604\pi\)
\(504\) 2.78019 + 6.54296i 0.123839 + 0.291446i
\(505\) 24.3028 1.08146
\(506\) 0 0
\(507\) 16.5889i 0.736737i
\(508\) 18.5616 + 18.3378i 0.823539 + 0.813609i
\(509\) 13.4499i 0.596156i 0.954542 + 0.298078i \(0.0963455\pi\)
−0.954542 + 0.298078i \(0.903654\pi\)
\(510\) 12.7578 + 5.23918i 0.564924 + 0.231995i
\(511\) 23.5576 1.04213
\(512\) −21.1335 8.08542i −0.933979 0.357328i
\(513\) 18.9278 0.835685
\(514\) −0.551893 0.226643i −0.0243429 0.00999679i
\(515\) 12.9353i 0.569997i
\(516\) 6.62139 + 6.54156i 0.291491 + 0.287976i
\(517\) 0 0
\(518\) 3.58540 8.73071i 0.157533 0.383606i
\(519\) −19.3827 −0.850808
\(520\) −0.563564 1.32630i −0.0247139 0.0581623i
\(521\) −6.69298 −0.293225 −0.146612 0.989194i \(-0.546837\pi\)
−0.146612 + 0.989194i \(0.546837\pi\)
\(522\) 7.52622 18.3269i 0.329414 0.802147i
\(523\) 23.7587i 1.03889i 0.854503 + 0.519447i \(0.173862\pi\)
−0.854503 + 0.519447i \(0.826138\pi\)
\(524\) 16.2375 16.4357i 0.709338 0.717995i
\(525\) 6.00196i 0.261947i
\(526\) 3.07887 + 1.26438i 0.134245 + 0.0551298i
\(527\) 13.5181 0.588856
\(528\) 0 0
\(529\) −13.5109 −0.587431
\(530\) −11.7075 4.80788i −0.508543 0.208841i
\(531\) 7.24376i 0.314353i
\(532\) 8.89248 9.00101i 0.385538 0.390243i
\(533\) 1.44910i 0.0627677i
\(534\) −2.96457 + 7.21894i −0.128289 + 0.312394i
\(535\) 7.96080 0.344175
\(536\) 28.6050 12.1546i 1.23555 0.525000i
\(537\) −28.6684 −1.23713
\(538\) 12.3869 30.1630i 0.534036 1.30042i
\(539\) 0 0
\(540\) −12.5805 12.4288i −0.541378 0.534851i
\(541\) 28.5717i 1.22839i −0.789153 0.614197i \(-0.789480\pi\)
0.789153 0.614197i \(-0.210520\pi\)
\(542\) −5.72524 2.35116i −0.245920 0.100991i
\(543\) −14.8076 −0.635455
\(544\) 9.99378 25.2013i 0.428480 1.08050i
\(545\) 16.1102 0.690084
\(546\) −1.01254 0.415817i −0.0433329 0.0177953i
\(547\) 30.2265i 1.29239i −0.763172 0.646195i \(-0.776359\pi\)
0.763172 0.646195i \(-0.223641\pi\)
\(548\) 25.6371 + 25.3280i 1.09516 + 1.08196i
\(549\) 14.7033i 0.627522i
\(550\) 0 0
\(551\) −35.2616 −1.50220
\(552\) −10.3150 + 4.38296i −0.439034 + 0.186551i
\(553\) −11.1720 −0.475083
\(554\) 3.36662 8.19796i 0.143034 0.348298i
\(555\) 7.26911i 0.308556i
\(556\) −9.42447 + 9.53949i −0.399687 + 0.404565i
\(557\) 7.94247i 0.336533i −0.985742 0.168267i \(-0.946183\pi\)
0.985742 0.168267i \(-0.0538170\pi\)
\(558\) −4.96435 2.03869i −0.210158 0.0863044i
\(559\) 1.16525 0.0492846
\(560\) −11.8209 + 0.143398i −0.499523 + 0.00605968i
\(561\) 0 0
\(562\) −14.6324 6.00901i −0.617230 0.253475i
\(563\) 17.7730i 0.749043i 0.927218 + 0.374521i \(0.122193\pi\)
−0.927218 + 0.374521i \(0.877807\pi\)
\(564\) 23.0105 23.2913i 0.968916 0.980741i
\(565\) 12.7375i 0.535872i
\(566\) −17.1809 + 41.8368i −0.722167 + 1.75853i
\(567\) −5.89237 −0.247456
\(568\) −12.3177 28.9887i −0.516838 1.21634i
\(569\) −28.3627 −1.18903 −0.594513 0.804086i \(-0.702655\pi\)
−0.594513 + 0.804086i \(0.702655\pi\)
\(570\) −3.70190 + 9.01439i −0.155055 + 0.377571i
\(571\) 11.9221i 0.498923i 0.968385 + 0.249461i \(0.0802535\pi\)
−0.968385 + 0.249461i \(0.919746\pi\)
\(572\) 0 0
\(573\) 13.8888i 0.580215i
\(574\) 10.9965 + 4.51587i 0.458985 + 0.188489i
\(575\) 7.69340 0.320837
\(576\) −7.47075 + 7.74769i −0.311281 + 0.322820i
\(577\) −24.5999 −1.02411 −0.512053 0.858954i \(-0.671115\pi\)
−0.512053 + 0.858954i \(0.671115\pi\)
\(578\) 7.80745 + 3.20625i 0.324747 + 0.133362i
\(579\) 11.6497i 0.484145i
\(580\) 23.4368 + 23.1542i 0.973161 + 0.961428i
\(581\) 0.260889i 0.0108235i
\(582\) −8.56506 + 20.8566i −0.355033 + 0.864532i
\(583\) 0 0
\(584\) 13.9476 + 32.8245i 0.577154 + 1.35829i
\(585\) −0.685452 −0.0283400
\(586\) −4.11779 + 10.0271i −0.170104 + 0.414217i
\(587\) 12.0954i 0.499229i 0.968345 + 0.249614i \(0.0803039\pi\)
−0.968345 + 0.249614i \(0.919696\pi\)
\(588\) 6.34572 6.42317i 0.261693 0.264887i
\(589\) 9.55159i 0.393566i
\(590\) −11.1426 4.57589i −0.458735 0.188386i
\(591\) −11.2440 −0.462516
\(592\) 14.2879 0.173326i 0.587231 0.00712366i
\(593\) 1.77063 0.0727109 0.0363554 0.999339i \(-0.488425\pi\)
0.0363554 + 0.999339i \(0.488425\pi\)
\(594\) 0 0
\(595\) 14.1639i 0.580665i
\(596\) 5.63308 5.70183i 0.230740 0.233556i
\(597\) 3.28760i 0.134552i
\(598\) −0.533000 + 1.29790i −0.0217960 + 0.0530749i
\(599\) −14.3212 −0.585149 −0.292574 0.956243i \(-0.594512\pi\)
−0.292574 + 0.956243i \(0.594512\pi\)
\(600\) −8.36298 + 3.55354i −0.341417 + 0.145073i
\(601\) −20.9923 −0.856293 −0.428147 0.903709i \(-0.640833\pi\)
−0.428147 + 0.903709i \(0.640833\pi\)
\(602\) 3.63128 8.84244i 0.148000 0.360391i
\(603\) 14.7835i 0.602029i
\(604\) 3.32091 + 3.28087i 0.135126 + 0.133497i
\(605\) 0 0
\(606\) 25.8520 + 10.6165i 1.05017 + 0.431267i
\(607\) 34.0000 1.38002 0.690009 0.723800i \(-0.257606\pi\)
0.690009 + 0.723800i \(0.257606\pi\)
\(608\) 17.8067 + 7.06140i 0.722157 + 0.286378i
\(609\) 25.0245 1.01405
\(610\) −22.6172 9.28809i −0.915743 0.376064i
\(611\) 4.09885i 0.165822i
\(612\) −9.17345 9.06284i −0.370815 0.366344i
\(613\) 13.3983i 0.541152i 0.962699 + 0.270576i \(0.0872141\pi\)
−0.962699 + 0.270576i \(0.912786\pi\)
\(614\) 1.92066 4.67695i 0.0775115 0.188746i
\(615\) −9.15557 −0.369188
\(616\) 0 0
\(617\) 24.0930 0.969946 0.484973 0.874529i \(-0.338829\pi\)
0.484973 + 0.874529i \(0.338829\pi\)
\(618\) −5.65071 + 13.7599i −0.227305 + 0.553504i
\(619\) 2.41918i 0.0972349i 0.998817 + 0.0486175i \(0.0154815\pi\)
−0.998817 + 0.0486175i \(0.984518\pi\)
\(620\) 6.27197 6.34851i 0.251888 0.254962i
\(621\) 17.2183i 0.690946i
\(622\) −0.102459 0.0420765i −0.00410825 0.00168711i
\(623\) 8.01461 0.321098
\(624\) −0.0201015 1.65704i −0.000804704 0.0663348i
\(625\) −6.27497 −0.250999
\(626\) −11.7054 4.80701i −0.467843 0.192127i
\(627\) 0 0
\(628\) 11.1687 11.3051i 0.445682 0.451121i
\(629\) 17.1200i 0.682620i
\(630\) −2.13609 + 5.20154i −0.0851039 + 0.207234i
\(631\) 40.5047 1.61247 0.806234 0.591596i \(-0.201502\pi\)
0.806234 + 0.591596i \(0.201502\pi\)
\(632\) −6.61454 15.5668i −0.263112 0.619215i
\(633\) 4.26506 0.169521
\(634\) −13.1532 + 32.0289i −0.522379 + 1.27203i
\(635\) 20.6381i 0.818998i
\(636\) −10.3536 10.2287i −0.410546 0.405596i
\(637\) 1.13036i 0.0447865i
\(638\) 0 0
\(639\) −14.9818 −0.592670
\(640\) −7.19851 16.3860i −0.284546 0.647714i
\(641\) −22.2703 −0.879624 −0.439812 0.898090i \(-0.644955\pi\)
−0.439812 + 0.898090i \(0.644955\pi\)
\(642\) 8.46829 + 3.47763i 0.334217 + 0.137251i
\(643\) 24.9678i 0.984633i −0.870416 0.492316i \(-0.836150\pi\)
0.870416 0.492316i \(-0.163850\pi\)
\(644\) 8.18804 + 8.08932i 0.322654 + 0.318764i
\(645\) 7.36212i 0.289883i
\(646\) −8.71861 + 21.2305i −0.343029 + 0.835302i
\(647\) −12.3518 −0.485599 −0.242799 0.970077i \(-0.578066\pi\)
−0.242799 + 0.970077i \(0.578066\pi\)
\(648\) −3.48866 8.21028i −0.137047 0.322530i
\(649\) 0 0
\(650\) −0.432136 + 1.05228i −0.0169498 + 0.0412740i
\(651\) 6.77858i 0.265674i
\(652\) 7.89291 7.98924i 0.309110 0.312883i
\(653\) 4.78361i 0.187197i −0.995610 0.0935987i \(-0.970163\pi\)
0.995610 0.0935987i \(-0.0298371\pi\)
\(654\) 17.1372 + 7.03764i 0.670117 + 0.275194i
\(655\) 18.2743 0.714036
\(656\) 0.218307 + 17.9959i 0.00852347 + 0.702623i
\(657\) 16.9642 0.661835
\(658\) −31.1040 12.7733i −1.21256 0.497956i
\(659\) 34.4552i 1.34219i 0.741374 + 0.671093i \(0.234175\pi\)
−0.741374 + 0.671093i \(0.765825\pi\)
\(660\) 0 0
\(661\) 39.9505i 1.55389i 0.629567 + 0.776947i \(0.283233\pi\)
−0.629567 + 0.776947i \(0.716767\pi\)
\(662\) −13.0055 + 31.6693i −0.505472 + 1.23086i
\(663\) 1.98549 0.0771102
\(664\) 0.363516 0.154463i 0.0141071 0.00599431i
\(665\) 10.0079 0.388092
\(666\) 2.58190 6.28712i 0.100047 0.243621i
\(667\) 32.0768i 1.24202i
\(668\) −25.6483 25.3391i −0.992363 0.980398i
\(669\) 19.1729i 0.741268i
\(670\) 22.7405 + 9.33872i 0.878541 + 0.360786i
\(671\) 0 0
\(672\) −12.6371 5.01134i −0.487486 0.193317i
\(673\) −10.8179 −0.417000 −0.208500 0.978022i \(-0.566858\pi\)
−0.208500 + 0.978022i \(0.566858\pi\)
\(674\) −29.1789 11.9828i −1.12393 0.461558i
\(675\) 13.9599i 0.537318i
\(676\) 18.3484 + 18.1271i 0.705706 + 0.697197i
\(677\) 37.4282i 1.43848i 0.694761 + 0.719241i \(0.255510\pi\)
−0.694761 + 0.719241i \(0.744490\pi\)
\(678\) −5.56432 + 13.5495i −0.213697 + 0.520367i
\(679\) 23.1554 0.888621
\(680\) 19.7357 8.38594i 0.756829 0.321586i
\(681\) 1.70142 0.0651987
\(682\) 0 0
\(683\) 24.1362i 0.923545i −0.886998 0.461772i \(-0.847214\pi\)
0.886998 0.461772i \(-0.152786\pi\)
\(684\) 6.40362 6.48177i 0.244848 0.247837i
\(685\) 28.5051i 1.08912i
\(686\) −25.6860 10.5483i −0.980696 0.402737i
\(687\) 30.3611 1.15835
\(688\) 14.4708 0.175544i 0.551693 0.00669256i
\(689\) −1.82204 −0.0694143
\(690\) −8.20022 3.36754i −0.312177 0.128200i
\(691\) 44.8113i 1.70470i −0.522969 0.852352i \(-0.675176\pi\)
0.522969 0.852352i \(-0.324824\pi\)
\(692\) −21.1801 + 21.4386i −0.805146 + 0.814972i
\(693\) 0 0
\(694\) 9.04670 22.0294i 0.343408 0.836224i
\(695\) −10.6067 −0.402334
\(696\) 14.8161 + 34.8686i 0.561603 + 1.32169i
\(697\) −21.5630 −0.816756
\(698\) −3.20938 + 7.81507i −0.121477 + 0.295805i
\(699\) 3.17829i 0.120214i
\(700\) 6.63856 + 6.55851i 0.250914 + 0.247888i
\(701\) 22.9120i 0.865376i 0.901544 + 0.432688i \(0.142435\pi\)
−0.901544 + 0.432688i \(0.857565\pi\)
\(702\) −2.35508 0.967147i −0.0888866 0.0365026i
\(703\) −12.0967 −0.456234
\(704\) 0 0
\(705\) 25.8969 0.975333
\(706\) −8.75798 3.59660i −0.329611 0.135360i
\(707\) 28.7014i 1.07943i
\(708\) −9.85401 9.73520i −0.370336 0.365871i
\(709\) 39.8708i 1.49738i 0.662920 + 0.748690i \(0.269317\pi\)
−0.662920 + 0.748690i \(0.730683\pi\)
\(710\) 9.46399 23.0455i 0.355177 0.864883i
\(711\) −8.04515 −0.301717
\(712\) 4.74515 + 11.1674i 0.177832 + 0.418514i
\(713\) −8.68889 −0.325402
\(714\) 6.18744 15.0669i 0.231559 0.563863i
\(715\) 0 0
\(716\) −31.3268 + 31.7091i −1.17074 + 1.18502i
\(717\) 20.3495i 0.759965i
\(718\) −26.3215 10.8093i −0.982308 0.403400i
\(719\) −36.2649 −1.35245 −0.676227 0.736693i \(-0.736386\pi\)
−0.676227 + 0.736693i \(0.736386\pi\)
\(720\) −8.51239 + 0.103263i −0.317238 + 0.00384840i
\(721\) 15.2765 0.568927
\(722\) 9.85475 + 4.04700i 0.366756 + 0.150614i
\(723\) 4.14856i 0.154287i
\(724\) −16.1807 + 16.3782i −0.601350 + 0.608690i
\(725\) 26.0067i 0.965864i
\(726\) 0 0
\(727\) 4.42926 0.164272 0.0821360 0.996621i \(-0.473826\pi\)
0.0821360 + 0.996621i \(0.473826\pi\)
\(728\) −1.56636 + 0.665565i −0.0580530 + 0.0246675i
\(729\) −25.8133 −0.956046
\(730\) −10.7163 + 26.0949i −0.396627 + 0.965817i
\(731\) 17.3391i 0.641309i
\(732\) −20.0016 19.7604i −0.739279 0.730365i
\(733\) 27.2599i 1.00687i 0.864034 + 0.503434i \(0.167930\pi\)
−0.864034 + 0.503434i \(0.832070\pi\)
\(734\) 9.75840 + 4.00743i 0.360189 + 0.147917i
\(735\) 7.14172 0.263426
\(736\) −6.42362 + 16.1984i −0.236778 + 0.597081i
\(737\) 0 0
\(738\) 7.91875 + 3.25195i 0.291493 + 0.119706i
\(739\) 1.16933i 0.0430146i −0.999769 0.0215073i \(-0.993153\pi\)
0.999769 0.0215073i \(-0.00684651\pi\)
\(740\) 8.04010 + 7.94316i 0.295560 + 0.291996i
\(741\) 1.40291i 0.0515372i
\(742\) −5.67808 + 13.8265i −0.208449 + 0.507588i
\(743\) −39.6565 −1.45486 −0.727429 0.686183i \(-0.759285\pi\)
−0.727429 + 0.686183i \(0.759285\pi\)
\(744\) 9.44511 4.01335i 0.346275 0.147137i
\(745\) 6.33969 0.232268
\(746\) 0.826838 2.01341i 0.0302727 0.0737163i
\(747\) 0.187870i 0.00687380i
\(748\) 0 0
\(749\) 9.40165i 0.343529i
\(750\) −19.9586 8.19629i −0.728784 0.299286i
\(751\) −6.61284 −0.241306 −0.120653 0.992695i \(-0.538499\pi\)
−0.120653 + 0.992695i \(0.538499\pi\)
\(752\) −0.617491 50.9022i −0.0225176 1.85621i
\(753\) 0.444870 0.0162120
\(754\) 4.38739 + 1.80175i 0.159779 + 0.0656158i
\(755\) 3.69242i 0.134381i
\(756\) −14.6783 + 14.8575i −0.533846 + 0.540362i
\(757\) 20.6836i 0.751759i −0.926668 0.375880i \(-0.877341\pi\)
0.926668 0.375880i \(-0.122659\pi\)
\(758\) −2.87426 + 6.99903i −0.104398 + 0.254216i
\(759\) 0 0
\(760\) 5.92534 + 13.9448i 0.214935 + 0.505832i
\(761\) −45.5490 −1.65115 −0.825575 0.564293i \(-0.809149\pi\)
−0.825575 + 0.564293i \(0.809149\pi\)
\(762\) −9.01564 + 21.9538i −0.326602 + 0.795300i
\(763\) 19.0260i 0.688788i
\(764\) −15.3620 15.1767i −0.555776 0.549075i
\(765\) 10.1997i 0.368770i
\(766\) −12.5499 5.15382i −0.453447 0.186215i
\(767\) −1.73413 −0.0626157
\(768\) −0.499267 20.5752i −0.0180157 0.742444i
\(769\) 19.1817 0.691711 0.345856 0.938288i \(-0.387589\pi\)
0.345856 + 0.938288i \(0.387589\pi\)
\(770\) 0 0
\(771\) 0.542667i 0.0195437i
\(772\) −12.8853 12.7300i −0.463753 0.458162i
\(773\) 50.1410i 1.80345i 0.432314 + 0.901723i \(0.357697\pi\)
−0.432314 + 0.901723i \(0.642303\pi\)
\(774\) 2.61494 6.36758i 0.0939921 0.228878i
\(775\) −7.04463 −0.253050
\(776\) 13.7094 + 32.2641i 0.492140 + 1.15821i
\(777\) 8.58477 0.307977
\(778\) −6.03554 + 14.6970i −0.216385 + 0.526913i
\(779\) 15.2360i 0.545885i
\(780\) 0.921208 0.932451i 0.0329845 0.0333871i
\(781\) 0 0
\(782\) −19.3129 7.93115i −0.690630 0.283617i
\(783\) 58.2045 2.08006
\(784\) −0.170289 14.0376i −0.00608174 0.501342i
\(785\) 12.5697 0.448633
\(786\) 19.4393 + 7.98303i 0.693376 + 0.284745i
\(787\) 22.8144i 0.813246i −0.913596 0.406623i \(-0.866706\pi\)
0.913596 0.406623i \(-0.133294\pi\)
\(788\) −12.2866 + 12.4366i −0.437693 + 0.443035i
\(789\) 3.02740i 0.107778i
\(790\) 5.08212 12.3753i 0.180814 0.440295i
\(791\) 15.0430 0.534866
\(792\) 0 0
\(793\) −3.51991 −0.124996
\(794\) 5.28412 12.8672i 0.187526 0.456640i
\(795\) 11.5118i 0.408283i
\(796\) 3.63630 + 3.59245i 0.128885 + 0.127331i
\(797\) 26.6673i 0.944604i −0.881437 0.472302i \(-0.843423\pi\)
0.881437 0.472302i \(-0.156577\pi\)
\(798\) 10.6459 + 4.37192i 0.376862 + 0.154764i
\(799\) 60.9917 2.15773
\(800\) −5.20802 + 13.1331i −0.184131 + 0.464323i
\(801\) 5.77144 0.203924
\(802\) 14.0601 + 5.77400i 0.496480 + 0.203887i
\(803\) 0 0
\(804\) 20.1106 + 19.8681i 0.709246 + 0.700694i
\(805\) 9.10403i 0.320875i
\(806\) 0.488053 1.18844i 0.0171909 0.0418612i
\(807\) 29.6588 1.04404
\(808\) 39.9918 16.9930i 1.40691 0.597813i
\(809\) 38.5665 1.35592 0.677962 0.735097i \(-0.262863\pi\)
0.677962 + 0.735097i \(0.262863\pi\)
\(810\) 2.68043 6.52704i 0.0941806 0.229337i
\(811\) 16.8283i 0.590922i −0.955355 0.295461i \(-0.904527\pi\)
0.955355 0.295461i \(-0.0954733\pi\)
\(812\) 27.3450 27.6788i 0.959622 0.971334i
\(813\) 5.62954i 0.197437i
\(814\) 0 0
\(815\) 8.88299 0.311157
\(816\) 24.6572 0.299114i 0.863173 0.0104711i
\(817\) −12.2514 −0.428624
\(818\) 8.28162 + 3.40097i 0.289560 + 0.118912i
\(819\) 0.809515i 0.0282867i
\(820\) −10.0046 + 10.1267i −0.349374 + 0.353638i
\(821\) 1.25448i 0.0437816i −0.999760 0.0218908i \(-0.993031\pi\)
0.999760 0.0218908i \(-0.00696862\pi\)
\(822\) −12.4523 + 30.3223i −0.434324 + 1.05761i
\(823\) 50.2585 1.75190 0.875950 0.482402i \(-0.160236\pi\)
0.875950 + 0.482402i \(0.160236\pi\)
\(824\) 9.04465 + 21.2859i 0.315085 + 0.741529i
\(825\) 0 0
\(826\) −5.40410 + 13.1594i −0.188033 + 0.457874i
\(827\) 23.6885i 0.823732i 0.911245 + 0.411866i \(0.135123\pi\)
−0.911245 + 0.411866i \(0.864877\pi\)
\(828\) 5.89634 + 5.82525i 0.204912 + 0.202441i
\(829\) 33.4106i 1.16040i −0.814475 0.580199i \(-0.802975\pi\)
0.814475 0.580199i \(-0.197025\pi\)
\(830\) 0.288989 + 0.118678i 0.0100309 + 0.00411936i
\(831\) 8.06092 0.279630
\(832\) −1.85476 1.78847i −0.0643024 0.0620039i
\(833\) 16.8200 0.582779
\(834\) −11.2828 4.63346i −0.390692 0.160444i
\(835\) 28.5176i 0.986892i
\(836\) 0 0
\(837\) 15.7663i 0.544963i
\(838\) 4.63897 11.2962i 0.160251 0.390222i
\(839\) 18.8019 0.649113 0.324557 0.945866i \(-0.394785\pi\)
0.324557 + 0.945866i \(0.394785\pi\)
\(840\) −4.20510 9.89638i −0.145090 0.341458i
\(841\) −79.4321 −2.73904
\(842\) 15.8355 38.5607i 0.545728 1.32889i
\(843\) 14.3878i 0.495542i
\(844\) 4.66055 4.71743i 0.160423 0.162381i
\(845\) 20.4010i 0.701815i
\(846\) −22.3985 9.19828i −0.770076 0.316243i
\(847\) 0 0
\(848\) −22.6273 + 0.274491i −0.777026 + 0.00942605i
\(849\) −41.1374 −1.41183
\(850\) −15.6582 6.43028i −0.537072 0.220557i
\(851\) 11.0041i 0.377215i
\(852\) 20.1346 20.3804i 0.689801 0.698220i
\(853\) 43.9013i 1.50315i −0.659647 0.751575i \(-0.729294\pi\)
0.659647 0.751575i \(-0.270706\pi\)
\(854\) −10.9692 + 26.7108i −0.375358 + 0.914023i
\(855\) 7.20688 0.246470
\(856\) 13.1000 5.56637i 0.447750 0.190255i
\(857\) 35.4141 1.20972 0.604861 0.796331i \(-0.293229\pi\)
0.604861 + 0.796331i \(0.293229\pi\)
\(858\) 0 0
\(859\) 36.4697i 1.24433i −0.782886 0.622165i \(-0.786253\pi\)
0.782886 0.622165i \(-0.213747\pi\)
\(860\) 8.14299 + 8.04481i 0.277674 + 0.274326i
\(861\) 10.8127i 0.368495i
\(862\) 28.3465 + 11.6409i 0.965486 + 0.396492i
\(863\) 24.0325 0.818075 0.409037 0.912518i \(-0.365865\pi\)
0.409037 + 0.912518i \(0.365865\pi\)
\(864\) −29.3926 11.6559i −0.999955 0.396541i
\(865\) −23.8369 −0.810479
\(866\) −15.0644 6.18641i −0.511908 0.210223i
\(867\) 7.67694i 0.260723i
\(868\) −7.49756 7.40716i −0.254484 0.251415i
\(869\) 0 0
\(870\) −11.3836 + 27.7199i −0.385940 + 0.939793i
\(871\) 3.53910 0.119918
\(872\) 26.5104 11.2646i 0.897755 0.381468i
\(873\) 16.6745 0.564347
\(874\) 5.60399 13.6461i 0.189558 0.461587i
\(875\) 22.1584i 0.749090i
\(876\) −22.7989 + 23.0771i −0.770302 + 0.779703i
\(877\) 18.6541i 0.629904i −0.949108 0.314952i \(-0.898012\pi\)
0.949108 0.314952i \(-0.101988\pi\)
\(878\) −47.0379 19.3168i −1.58745 0.651912i
\(879\) −9.85952 −0.332553
\(880\) 0 0
\(881\) 32.4553 1.09345 0.546723 0.837314i \(-0.315875\pi\)
0.546723 + 0.837314i \(0.315875\pi\)
\(882\) −6.17695 2.53666i −0.207989 0.0854137i
\(883\) 13.0200i 0.438157i 0.975707 + 0.219079i \(0.0703051\pi\)
−0.975707 + 0.219079i \(0.929695\pi\)
\(884\) 2.16961 2.19609i 0.0729718 0.0738623i
\(885\) 10.9564i 0.368294i
\(886\) 14.9434 36.3883i 0.502033 1.22249i
\(887\) −19.1455 −0.642843 −0.321422 0.946936i \(-0.604161\pi\)
−0.321422 + 0.946936i \(0.604161\pi\)
\(888\) 5.08273 + 11.9618i 0.170565 + 0.401412i
\(889\) 24.3735 0.817460
\(890\) −3.64582 + 8.87785i −0.122208 + 0.297586i
\(891\) 0 0
\(892\) −21.2065 20.9508i −0.710046 0.701485i
\(893\) 43.0955i 1.44214i
\(894\) 6.74383 + 2.76946i 0.225548 + 0.0926245i
\(895\) −35.2564 −1.17849
\(896\) −19.3518 + 8.50139i −0.646497 + 0.284012i
\(897\) −1.27620 −0.0426110
\(898\) −17.1174 7.02951i −0.571215 0.234578i
\(899\) 29.3718i 0.979605i
\(900\) 4.78053 + 4.72289i 0.159351 + 0.157430i
\(901\) 27.1124i 0.903245i
\(902\) 0 0
\(903\) 8.69462 0.289339
\(904\) 8.90638 + 20.9605i 0.296222 + 0.697135i
\(905\) −18.2104 −0.605333
\(906\) −1.61301 + 3.92781i −0.0535888 + 0.130493i
\(907\) 53.3243i 1.77060i −0.465017 0.885302i \(-0.653952\pi\)
0.465017 0.885302i \(-0.346048\pi\)
\(908\) 1.85919 1.88188i 0.0616995 0.0624525i
\(909\) 20.6683i 0.685525i
\(910\) −1.24523 0.511371i −0.0412789 0.0169518i
\(911\) 47.3265 1.56800 0.783999 0.620762i \(-0.213177\pi\)
0.783999 + 0.620762i \(0.213177\pi\)
\(912\) 0.211348 + 17.4222i 0.00699844 + 0.576908i
\(913\) 0 0
\(914\) 8.67355 + 3.56193i 0.286896 + 0.117818i
\(915\) 22.2391i 0.735202i
\(916\) 33.1764 33.5814i 1.09618 1.10956i
\(917\) 21.5818i 0.712695i
\(918\) 14.3914 35.0440i 0.474985 1.15662i
\(919\) −55.9089 −1.84427 −0.922133 0.386874i \(-0.873555\pi\)
−0.922133 + 0.386874i \(0.873555\pi\)
\(920\) −12.6853 + 5.39016i −0.418223 + 0.177708i
\(921\) 4.59877 0.151535
\(922\) −4.52902 + 11.0285i −0.149155 + 0.363204i
\(923\) 3.58657i 0.118054i
\(924\) 0 0
\(925\) 8.92170i 0.293344i
\(926\) 11.9838 + 4.92134i 0.393813 + 0.161725i
\(927\) 11.0008 0.361315
\(928\) 54.7569 + 21.7143i 1.79748 + 0.712807i
\(929\) 20.2505 0.664396 0.332198 0.943210i \(-0.392210\pi\)
0.332198 + 0.943210i \(0.392210\pi\)
\(930\) 7.50870 + 3.08356i 0.246220 + 0.101114i
\(931\) 11.8847i 0.389504i
\(932\) −3.51539 3.47301i −0.115151 0.113762i
\(933\) 0.100747i 0.00329830i
\(934\) 6.21767 15.1405i 0.203449 0.495412i
\(935\) 0 0
\(936\) −1.12796 + 0.479284i −0.0368685 + 0.0156659i
\(937\) 40.6651 1.32847 0.664235 0.747524i \(-0.268757\pi\)
0.664235 + 0.747524i \(0.268757\pi\)
\(938\) 11.0290 26.8564i 0.360109 0.876891i
\(939\) 11.5097i 0.375606i
\(940\) 28.2983 28.6436i 0.922988 0.934253i
\(941\) 2.23992i 0.0730194i −0.999333 0.0365097i \(-0.988376\pi\)
0.999333 0.0365097i \(-0.0116240\pi\)
\(942\) 13.3711 + 5.49102i 0.435652 + 0.178907i
\(943\) 13.8598 0.451339
\(944\) −21.5355 + 0.261246i −0.700922 + 0.00850284i
\(945\) −16.5196 −0.537382
\(946\) 0 0
\(947\) 14.7173i 0.478247i 0.970989 + 0.239123i \(0.0768601\pi\)
−0.970989 + 0.239123i \(0.923140\pi\)
\(948\) 10.8122 10.9442i 0.351164 0.355450i
\(949\) 4.06115i 0.131831i
\(950\) 4.54350 11.0638i 0.147411 0.358956i
\(951\) −31.4935 −1.02125
\(952\) −9.90375 23.3077i −0.320982 0.755407i
\(953\) 18.3058 0.592984 0.296492 0.955035i \(-0.404183\pi\)
0.296492 + 0.955035i \(0.404183\pi\)
\(954\) −4.08887 + 9.95670i −0.132382 + 0.322360i
\(955\) 17.0805i 0.552712i
\(956\) −22.5078 22.2364i −0.727955 0.719178i
\(957\) 0 0
\(958\) −25.0627 10.2924i −0.809739 0.332532i
\(959\) 33.6643 1.08708
\(960\) 11.2997 11.7186i 0.364696 0.378215i
\(961\) −23.0438 −0.743349
\(962\) 1.50511 + 0.618097i 0.0485268 + 0.0199282i
\(963\) 6.77028i 0.218169i
\(964\) 4.58858 + 4.53325i 0.147788 + 0.146006i
\(965\) 14.3268i 0.461196i
\(966\) −3.97705 + 9.68441i −0.127959 + 0.311591i
\(967\) −7.98210 −0.256687 −0.128343 0.991730i \(-0.540966\pi\)
−0.128343 + 0.991730i \(0.540966\pi\)
\(968\) 0 0
\(969\) −20.8756 −0.670620
\(970\) −10.5333 + 25.6494i −0.338204 + 0.823553i
\(971\) 35.5820i 1.14188i 0.820992 + 0.570940i \(0.193421\pi\)
−0.820992 + 0.570940i \(0.806579\pi\)
\(972\) −17.8676 + 18.0857i −0.573104 + 0.580099i
\(973\) 12.5264i 0.401578i
\(974\) 55.5182 + 22.7994i 1.77892 + 0.730540i
\(975\) −1.03469 −0.0331367
\(976\) −43.7126 + 0.530274i −1.39920 + 0.0169737i
\(977\) −38.5825 −1.23436 −0.617181 0.786821i \(-0.711726\pi\)
−0.617181 + 0.786821i \(0.711726\pi\)
\(978\) 9.44927 + 3.88048i 0.302154 + 0.124084i
\(979\) 0 0
\(980\) 7.80397 7.89921i 0.249289 0.252331i
\(981\) 13.7009i 0.437437i
\(982\) −21.0913 + 51.3588i −0.673050 + 1.63893i
\(983\) 33.6443 1.07309 0.536543 0.843873i \(-0.319730\pi\)
0.536543 + 0.843873i \(0.319730\pi\)
\(984\) −15.0661 + 6.40178i −0.480290 + 0.204081i
\(985\) −13.8279 −0.440592
\(986\) −26.8104 + 65.2852i −0.853816 + 2.07911i
\(987\) 30.5841i 0.973502i
\(988\) 1.55171 + 1.53300i 0.0493664 + 0.0487712i
\(989\) 11.1449i 0.354387i
\(990\) 0 0
\(991\) 34.6130 1.09952 0.549758 0.835324i \(-0.314720\pi\)
0.549758 + 0.835324i \(0.314720\pi\)
\(992\) 5.88192 14.8324i 0.186751 0.470930i
\(993\) −31.1399 −0.988194
\(994\) −27.2166 11.1769i −0.863259 0.354510i
\(995\) 4.04309i 0.128174i
\(996\) 0.255568 + 0.252486i 0.00809798 + 0.00800034i
\(997\) 14.2720i 0.452000i −0.974127 0.226000i \(-0.927435\pi\)
0.974127 0.226000i \(-0.0725649\pi\)
\(998\) 12.1757 29.6487i 0.385414 0.938512i
\(999\) 19.9673 0.631737
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 968.2.c.i.485.18 20
4.3 odd 2 3872.2.c.i.1937.6 20
8.3 odd 2 3872.2.c.i.1937.15 20
8.5 even 2 inner 968.2.c.i.485.17 20
11.2 odd 10 88.2.o.a.37.8 40
11.3 even 5 968.2.o.d.493.8 40
11.4 even 5 968.2.o.d.269.6 40
11.5 even 5 968.2.o.i.245.1 40
11.6 odd 10 88.2.o.a.69.10 yes 40
11.7 odd 10 968.2.o.j.269.5 40
11.8 odd 10 968.2.o.j.493.3 40
11.9 even 5 968.2.o.i.565.3 40
11.10 odd 2 968.2.c.h.485.3 20
33.2 even 10 792.2.br.b.37.3 40
33.17 even 10 792.2.br.b.685.1 40
44.35 even 10 352.2.w.a.81.3 40
44.39 even 10 352.2.w.a.113.8 40
44.43 even 2 3872.2.c.h.1937.6 20
88.5 even 10 968.2.o.i.245.3 40
88.13 odd 10 88.2.o.a.37.10 yes 40
88.21 odd 2 968.2.c.h.485.4 20
88.29 odd 10 968.2.o.j.269.3 40
88.35 even 10 352.2.w.a.81.8 40
88.37 even 10 968.2.o.d.269.8 40
88.43 even 2 3872.2.c.h.1937.15 20
88.53 even 10 968.2.o.i.565.1 40
88.61 odd 10 88.2.o.a.69.8 yes 40
88.69 even 10 968.2.o.d.493.6 40
88.83 even 10 352.2.w.a.113.3 40
88.85 odd 10 968.2.o.j.493.5 40
264.101 even 10 792.2.br.b.37.1 40
264.149 even 10 792.2.br.b.685.3 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.o.a.37.8 40 11.2 odd 10
88.2.o.a.37.10 yes 40 88.13 odd 10
88.2.o.a.69.8 yes 40 88.61 odd 10
88.2.o.a.69.10 yes 40 11.6 odd 10
352.2.w.a.81.3 40 44.35 even 10
352.2.w.a.81.8 40 88.35 even 10
352.2.w.a.113.3 40 88.83 even 10
352.2.w.a.113.8 40 44.39 even 10
792.2.br.b.37.1 40 264.101 even 10
792.2.br.b.37.3 40 33.2 even 10
792.2.br.b.685.1 40 33.17 even 10
792.2.br.b.685.3 40 264.149 even 10
968.2.c.h.485.3 20 11.10 odd 2
968.2.c.h.485.4 20 88.21 odd 2
968.2.c.i.485.17 20 8.5 even 2 inner
968.2.c.i.485.18 20 1.1 even 1 trivial
968.2.o.d.269.6 40 11.4 even 5
968.2.o.d.269.8 40 88.37 even 10
968.2.o.d.493.6 40 88.69 even 10
968.2.o.d.493.8 40 11.3 even 5
968.2.o.i.245.1 40 11.5 even 5
968.2.o.i.245.3 40 88.5 even 10
968.2.o.i.565.1 40 88.53 even 10
968.2.o.i.565.3 40 11.9 even 5
968.2.o.j.269.3 40 88.29 odd 10
968.2.o.j.269.5 40 11.7 odd 10
968.2.o.j.493.3 40 11.8 odd 10
968.2.o.j.493.5 40 88.85 odd 10
3872.2.c.h.1937.6 20 44.43 even 2
3872.2.c.h.1937.15 20 88.43 even 2
3872.2.c.i.1937.6 20 4.3 odd 2
3872.2.c.i.1937.15 20 8.3 odd 2