L(s) = 1 | + (−0.707 + 0.707i)2-s + (1 + 1.41i)3-s − 1.00i·4-s + (−0.707 + 0.707i)5-s + (−1.70 − 0.292i)6-s + (0.707 + 0.707i)8-s + (−1.00 + 2.82i)9-s − 1.00i·10-s + (1.41 + 1.41i)11-s + (1.41 − 1.00i)12-s + (−3 + 2i)13-s + (−1.70 − 0.292i)15-s − 1.00·16-s − 4.24·17-s + (−1.29 − 2.70i)18-s + (6 + 6i)19-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s + (0.577 + 0.816i)3-s − 0.500i·4-s + (−0.316 + 0.316i)5-s + (−0.696 − 0.119i)6-s + (0.250 + 0.250i)8-s + (−0.333 + 0.942i)9-s − 0.316i·10-s + (0.426 + 0.426i)11-s + (0.408 − 0.288i)12-s + (−0.832 + 0.554i)13-s + (−0.440 − 0.0756i)15-s − 0.250·16-s − 1.02·17-s + (−0.304 − 0.638i)18-s + (1.37 + 1.37i)19-s + ⋯ |
Λ(s)=(=(390s/2ΓC(s)L(s)(−0.789−0.614i)Λ(2−s)
Λ(s)=(=(390s/2ΓC(s+1/2)L(s)(−0.789−0.614i)Λ(1−s)
Degree: |
2 |
Conductor: |
390
= 2⋅3⋅5⋅13
|
Sign: |
−0.789−0.614i
|
Analytic conductor: |
3.11416 |
Root analytic conductor: |
1.76469 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ390(281,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 390, ( :1/2), −0.789−0.614i)
|
Particular Values
L(1) |
≈ |
0.338504+0.986146i |
L(21) |
≈ |
0.338504+0.986146i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707−0.707i)T |
| 3 | 1+(−1−1.41i)T |
| 5 | 1+(0.707−0.707i)T |
| 13 | 1+(3−2i)T |
good | 7 | 1−7iT2 |
| 11 | 1+(−1.41−1.41i)T+11iT2 |
| 17 | 1+4.24T+17T2 |
| 19 | 1+(−6−6i)T+19iT2 |
| 23 | 1+1.41T+23T2 |
| 29 | 1−1.41iT−29T2 |
| 31 | 1+(3+3i)T+31iT2 |
| 37 | 1+(−5+5i)T−37iT2 |
| 41 | 1+(−7.07+7.07i)T−41iT2 |
| 43 | 1−4iT−43T2 |
| 47 | 1+(4.24+4.24i)T+47iT2 |
| 53 | 1−11.3iT−53T2 |
| 59 | 1+(2.82+2.82i)T+59iT2 |
| 61 | 1−2T+61T2 |
| 67 | 1+(−5−5i)T+67iT2 |
| 71 | 1+(−5.65+5.65i)T−71iT2 |
| 73 | 1+(−6+6i)T−73iT2 |
| 79 | 1−8T+79T2 |
| 83 | 1+(−5.65+5.65i)T−83iT2 |
| 89 | 1+(−4.24−4.24i)T+89iT2 |
| 97 | 1+(−10−10i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.40834894612124093803376400960, −10.55579055220919664340553580919, −9.554308198601143989746839679692, −9.177415289507952277780629733266, −7.88352141201085335872112352848, −7.31775538686263285416472727303, −5.99129514401020568825503883306, −4.74855835723566852369912650104, −3.75476446524374393398850826685, −2.19553677753245923300945769963,
0.76639050194924002143569331056, 2.39367046731321102593747668067, 3.46325832119581224401560127071, 4.93931939876387097826589277771, 6.52395162277621688711317129857, 7.42630613824105012773309796664, 8.232713470840360096108154024278, 9.111435551954309844953359546284, 9.776002181501443931890110735056, 11.25905466866640928362952689025