L(s) = 1 | + (−0.707 + 0.707i)2-s + (1 + 1.41i)3-s − 1.00i·4-s + (−0.707 + 0.707i)5-s + (−1.70 − 0.292i)6-s + (0.707 + 0.707i)8-s + (−1.00 + 2.82i)9-s − 1.00i·10-s + (1.41 + 1.41i)11-s + (1.41 − 1.00i)12-s + (−3 + 2i)13-s + (−1.70 − 0.292i)15-s − 1.00·16-s − 4.24·17-s + (−1.29 − 2.70i)18-s + (6 + 6i)19-s + ⋯ |
L(s) = 1 | + (−0.499 + 0.499i)2-s + (0.577 + 0.816i)3-s − 0.500i·4-s + (−0.316 + 0.316i)5-s + (−0.696 − 0.119i)6-s + (0.250 + 0.250i)8-s + (−0.333 + 0.942i)9-s − 0.316i·10-s + (0.426 + 0.426i)11-s + (0.408 − 0.288i)12-s + (−0.832 + 0.554i)13-s + (−0.440 − 0.0756i)15-s − 0.250·16-s − 1.02·17-s + (−0.304 − 0.638i)18-s + (1.37 + 1.37i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.789 - 0.614i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.789 - 0.614i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.338504 + 0.986146i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.338504 + 0.986146i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 + (-1 - 1.41i)T \) |
| 5 | \( 1 + (0.707 - 0.707i)T \) |
| 13 | \( 1 + (3 - 2i)T \) |
good | 7 | \( 1 - 7iT^{2} \) |
| 11 | \( 1 + (-1.41 - 1.41i)T + 11iT^{2} \) |
| 17 | \( 1 + 4.24T + 17T^{2} \) |
| 19 | \( 1 + (-6 - 6i)T + 19iT^{2} \) |
| 23 | \( 1 + 1.41T + 23T^{2} \) |
| 29 | \( 1 - 1.41iT - 29T^{2} \) |
| 31 | \( 1 + (3 + 3i)T + 31iT^{2} \) |
| 37 | \( 1 + (-5 + 5i)T - 37iT^{2} \) |
| 41 | \( 1 + (-7.07 + 7.07i)T - 41iT^{2} \) |
| 43 | \( 1 - 4iT - 43T^{2} \) |
| 47 | \( 1 + (4.24 + 4.24i)T + 47iT^{2} \) |
| 53 | \( 1 - 11.3iT - 53T^{2} \) |
| 59 | \( 1 + (2.82 + 2.82i)T + 59iT^{2} \) |
| 61 | \( 1 - 2T + 61T^{2} \) |
| 67 | \( 1 + (-5 - 5i)T + 67iT^{2} \) |
| 71 | \( 1 + (-5.65 + 5.65i)T - 71iT^{2} \) |
| 73 | \( 1 + (-6 + 6i)T - 73iT^{2} \) |
| 79 | \( 1 - 8T + 79T^{2} \) |
| 83 | \( 1 + (-5.65 + 5.65i)T - 83iT^{2} \) |
| 89 | \( 1 + (-4.24 - 4.24i)T + 89iT^{2} \) |
| 97 | \( 1 + (-10 - 10i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.40834894612124093803376400960, −10.55579055220919664340553580919, −9.554308198601143989746839679692, −9.177415289507952277780629733266, −7.88352141201085335872112352848, −7.31775538686263285416472727303, −5.99129514401020568825503883306, −4.74855835723566852369912650104, −3.75476446524374393398850826685, −2.19553677753245923300945769963,
0.76639050194924002143569331056, 2.39367046731321102593747668067, 3.46325832119581224401560127071, 4.93931939876387097826589277771, 6.52395162277621688711317129857, 7.42630613824105012773309796664, 8.232713470840360096108154024278, 9.111435551954309844953359546284, 9.776002181501443931890110735056, 11.25905466866640928362952689025