gp: [N,k,chi] = [390,2,Mod(161,390)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(390, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 0, 3]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("390.161");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [4,0,4,0,0,-4,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a primitive root of unity ζ 8 \zeta_{8} ζ 8 .
We also show the integral q q q -expansion of the trace form .
Character values
We give the values of χ \chi χ on generators for ( Z / 390 Z ) × \left(\mathbb{Z}/390\mathbb{Z}\right)^\times ( Z / 3 9 0 Z ) × .
n n n
131 131 1 3 1
157 157 1 5 7
301 301 3 0 1
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
− ζ 8 2 -\zeta_{8}^{2} − ζ 8 2
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 390 , [ χ ] ) S_{2}^{\mathrm{new}}(390, [\chi]) S 2 n e w ( 3 9 0 , [ χ ] ) :
T 7 T_{7} T 7
T7
T 11 4 + 16 T_{11}^{4} + 16 T 1 1 4 + 1 6
T11^4 + 16
T 17 2 − 18 T_{17}^{2} - 18 T 1 7 2 − 1 8
T17^2 - 18
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 4 + 1 T^{4} + 1 T 4 + 1
T^4 + 1
3 3 3
( T 2 − 2 T + 3 ) 2 (T^{2} - 2 T + 3)^{2} ( T 2 − 2 T + 3 ) 2
(T^2 - 2*T + 3)^2
5 5 5
T 4 + 1 T^{4} + 1 T 4 + 1
T^4 + 1
7 7 7
T 4 T^{4} T 4
T^4
11 11 1 1
T 4 + 16 T^{4} + 16 T 4 + 1 6
T^4 + 16
13 13 1 3
( T 2 + 6 T + 13 ) 2 (T^{2} + 6 T + 13)^{2} ( T 2 + 6 T + 1 3 ) 2
(T^2 + 6*T + 13)^2
17 17 1 7
( T 2 − 18 ) 2 (T^{2} - 18)^{2} ( T 2 − 1 8 ) 2
(T^2 - 18)^2
19 19 1 9
( T 2 − 12 T + 72 ) 2 (T^{2} - 12 T + 72)^{2} ( T 2 − 1 2 T + 7 2 ) 2
(T^2 - 12*T + 72)^2
23 23 2 3
( T 2 − 2 ) 2 (T^{2} - 2)^{2} ( T 2 − 2 ) 2
(T^2 - 2)^2
29 29 2 9
( T 2 + 2 ) 2 (T^{2} + 2)^{2} ( T 2 + 2 ) 2
(T^2 + 2)^2
31 31 3 1
( T 2 + 6 T + 18 ) 2 (T^{2} + 6 T + 18)^{2} ( T 2 + 6 T + 1 8 ) 2
(T^2 + 6*T + 18)^2
37 37 3 7
( T 2 − 10 T + 50 ) 2 (T^{2} - 10 T + 50)^{2} ( T 2 − 1 0 T + 5 0 ) 2
(T^2 - 10*T + 50)^2
41 41 4 1
T 4 + 10000 T^{4} + 10000 T 4 + 1 0 0 0 0
T^4 + 10000
43 43 4 3
( T 2 + 16 ) 2 (T^{2} + 16)^{2} ( T 2 + 1 6 ) 2
(T^2 + 16)^2
47 47 4 7
T 4 + 1296 T^{4} + 1296 T 4 + 1 2 9 6
T^4 + 1296
53 53 5 3
( T 2 + 128 ) 2 (T^{2} + 128)^{2} ( T 2 + 1 2 8 ) 2
(T^2 + 128)^2
59 59 5 9
T 4 + 256 T^{4} + 256 T 4 + 2 5 6
T^4 + 256
61 61 6 1
( T − 2 ) 4 (T - 2)^{4} ( T − 2 ) 4
(T - 2)^4
67 67 6 7
( T 2 − 10 T + 50 ) 2 (T^{2} - 10 T + 50)^{2} ( T 2 − 1 0 T + 5 0 ) 2
(T^2 - 10*T + 50)^2
71 71 7 1
T 4 + 4096 T^{4} + 4096 T 4 + 4 0 9 6
T^4 + 4096
73 73 7 3
( T 2 − 12 T + 72 ) 2 (T^{2} - 12 T + 72)^{2} ( T 2 − 1 2 T + 7 2 ) 2
(T^2 - 12*T + 72)^2
79 79 7 9
( T − 8 ) 4 (T - 8)^{4} ( T − 8 ) 4
(T - 8)^4
83 83 8 3
T 4 + 4096 T^{4} + 4096 T 4 + 4 0 9 6
T^4 + 4096
89 89 8 9
T 4 + 1296 T^{4} + 1296 T 4 + 1 2 9 6
T^4 + 1296
97 97 9 7
( T 2 − 20 T + 200 ) 2 (T^{2} - 20 T + 200)^{2} ( T 2 − 2 0 T + 2 0 0 ) 2
(T^2 - 20*T + 200)^2
show more
show less