Properties

Label 390.2.p.d
Level 390390
Weight 22
Character orbit 390.p
Analytic conductor 3.1143.114
Analytic rank 00
Dimension 44
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [390,2,Mod(161,390)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(390, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("390.161");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 390=23513 390 = 2 \cdot 3 \cdot 5 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 390.p (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.114165678833.11416567883
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(i)\Q(i)
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ8\zeta_{8}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+ζ8q2+(ζ83+ζ8+1)q3+ζ82q4+ζ8q5+(ζ82+ζ81)q6+ζ83q8+(2ζ83+2ζ81)q9++(2ζ834ζ824)q99+O(q100) q + \zeta_{8} q^{2} + (\zeta_{8}^{3} + \zeta_{8} + 1) q^{3} + \zeta_{8}^{2} q^{4} + \zeta_{8} q^{5} + (\zeta_{8}^{2} + \zeta_{8} - 1) q^{6} + \zeta_{8}^{3} q^{8} + (2 \zeta_{8}^{3} + 2 \zeta_{8} - 1) q^{9}+ \cdots + ( - 2 \zeta_{8}^{3} - 4 \zeta_{8}^{2} - 4) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q34q64q912q134q154q168q18+24q198q224q2420q2712q318q33+12q34+20q3712q394q408q45+16q99+O(q100) 4 q + 4 q^{3} - 4 q^{6} - 4 q^{9} - 12 q^{13} - 4 q^{15} - 4 q^{16} - 8 q^{18} + 24 q^{19} - 8 q^{22} - 4 q^{24} - 20 q^{27} - 12 q^{31} - 8 q^{33} + 12 q^{34} + 20 q^{37} - 12 q^{39} - 4 q^{40} - 8 q^{45}+ \cdots - 16 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/390Z)×\left(\mathbb{Z}/390\mathbb{Z}\right)^\times.

nn 131131 157157 301301
χ(n)\chi(n) 1-1 11 ζ82-\zeta_{8}^{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
161.1
−0.707107 0.707107i
0.707107 + 0.707107i
−0.707107 + 0.707107i
0.707107 0.707107i
−0.707107 0.707107i 1.00000 1.41421i 1.00000i −0.707107 0.707107i −1.70711 + 0.292893i 0 0.707107 0.707107i −1.00000 2.82843i 1.00000i
161.2 0.707107 + 0.707107i 1.00000 + 1.41421i 1.00000i 0.707107 + 0.707107i −0.292893 + 1.70711i 0 −0.707107 + 0.707107i −1.00000 + 2.82843i 1.00000i
281.1 −0.707107 + 0.707107i 1.00000 + 1.41421i 1.00000i −0.707107 + 0.707107i −1.70711 0.292893i 0 0.707107 + 0.707107i −1.00000 + 2.82843i 1.00000i
281.2 0.707107 0.707107i 1.00000 1.41421i 1.00000i 0.707107 0.707107i −0.292893 1.70711i 0 −0.707107 0.707107i −1.00000 2.82843i 1.00000i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
13.d odd 4 1 inner
39.f even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 390.2.p.d 4
3.b odd 2 1 inner 390.2.p.d 4
13.d odd 4 1 inner 390.2.p.d 4
39.f even 4 1 inner 390.2.p.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
390.2.p.d 4 1.a even 1 1 trivial
390.2.p.d 4 3.b odd 2 1 inner
390.2.p.d 4 13.d odd 4 1 inner
390.2.p.d 4 39.f even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(390,[χ])S_{2}^{\mathrm{new}}(390, [\chi]):

T7 T_{7} Copy content Toggle raw display
T114+16 T_{11}^{4} + 16 Copy content Toggle raw display
T17218 T_{17}^{2} - 18 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4+1 T^{4} + 1 Copy content Toggle raw display
33 (T22T+3)2 (T^{2} - 2 T + 3)^{2} Copy content Toggle raw display
55 T4+1 T^{4} + 1 Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 T4+16 T^{4} + 16 Copy content Toggle raw display
1313 (T2+6T+13)2 (T^{2} + 6 T + 13)^{2} Copy content Toggle raw display
1717 (T218)2 (T^{2} - 18)^{2} Copy content Toggle raw display
1919 (T212T+72)2 (T^{2} - 12 T + 72)^{2} Copy content Toggle raw display
2323 (T22)2 (T^{2} - 2)^{2} Copy content Toggle raw display
2929 (T2+2)2 (T^{2} + 2)^{2} Copy content Toggle raw display
3131 (T2+6T+18)2 (T^{2} + 6 T + 18)^{2} Copy content Toggle raw display
3737 (T210T+50)2 (T^{2} - 10 T + 50)^{2} Copy content Toggle raw display
4141 T4+10000 T^{4} + 10000 Copy content Toggle raw display
4343 (T2+16)2 (T^{2} + 16)^{2} Copy content Toggle raw display
4747 T4+1296 T^{4} + 1296 Copy content Toggle raw display
5353 (T2+128)2 (T^{2} + 128)^{2} Copy content Toggle raw display
5959 T4+256 T^{4} + 256 Copy content Toggle raw display
6161 (T2)4 (T - 2)^{4} Copy content Toggle raw display
6767 (T210T+50)2 (T^{2} - 10 T + 50)^{2} Copy content Toggle raw display
7171 T4+4096 T^{4} + 4096 Copy content Toggle raw display
7373 (T212T+72)2 (T^{2} - 12 T + 72)^{2} Copy content Toggle raw display
7979 (T8)4 (T - 8)^{4} Copy content Toggle raw display
8383 T4+4096 T^{4} + 4096 Copy content Toggle raw display
8989 T4+1296 T^{4} + 1296 Copy content Toggle raw display
9797 (T220T+200)2 (T^{2} - 20 T + 200)^{2} Copy content Toggle raw display
show more
show less