L(s) = 1 | + 4·4-s − 8·9-s − 8·11-s + 12·16-s − 20·25-s − 32·36-s + 24·43-s − 32·44-s + 32·64-s + 32·81-s + 64·99-s − 80·100-s − 24·107-s − 32·113-s + 32·121-s + 127-s + 131-s + 137-s + 139-s − 96·144-s + 149-s + 151-s + 157-s + 163-s + 167-s − 52·169-s + 96·172-s + ⋯ |
L(s) = 1 | + 2·4-s − 8/3·9-s − 2.41·11-s + 3·16-s − 4·25-s − 5.33·36-s + 3.65·43-s − 4.82·44-s + 4·64-s + 32/9·81-s + 6.43·99-s − 8·100-s − 2.32·107-s − 3.01·113-s + 2.90·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 8·144-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 4·169-s + 7.31·172-s + ⋯ |
Λ(s)=(=((212⋅78)s/2ΓC(s)4L(s)Λ(2−s)
Λ(s)=(=((212⋅78)s/2ΓC(s+1/2)4L(s)Λ(1−s)
Degree: |
8 |
Conductor: |
212⋅78
|
Sign: |
1
|
Analytic conductor: |
95.9959 |
Root analytic conductor: |
1.76921 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(8, 212⋅78, ( :1/2,1/2,1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
0.8783391725 |
L(21) |
≈ |
0.8783391725 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | C2 | (1−pT2)2 |
| 7 | | 1 |
good | 3 | C4×C2 | 1+8T2+32T4+8p2T6+p4T8 |
| 5 | C2 | (1+pT2)4 |
| 11 | C22 | (1+4T+8T2+4pT3+p2T4)2 |
| 13 | C2 | (1+pT2)4 |
| 17 | C4×C2 | 1−48T2+1152T4−48p2T6+p4T8 |
| 19 | C4×C2 | 1−24T2+288T4−24p2T6+p4T8 |
| 23 | C2 | (1−pT2)4 |
| 29 | C2 | (1−pT2)4 |
| 31 | C2 | (1+pT2)4 |
| 37 | C2 | (1−pT2)4 |
| 41 | C4×C2 | 1−96T2+4608T4−96p2T6+p4T8 |
| 43 | C22 | (1−12T+72T2−12pT3+p2T4)2 |
| 47 | C2 | (1+pT2)4 |
| 53 | C2 | (1−pT2)4 |
| 59 | C4×C2 | 1+120T2+7200T4+120p2T6+p4T8 |
| 61 | C2 | (1+pT2)4 |
| 67 | C22 | (1+62T2+p2T4)2 |
| 71 | C2 | (1−pT2)4 |
| 73 | C4×C2 | 1−48T2+1152T4−48p2T6+p4T8 |
| 79 | C2 | (1−pT2)4 |
| 83 | C4×C2 | 1+72T2+2592T4+72p2T6+p4T8 |
| 89 | C4×C2 | 1+144T2+10368T4+144p2T6+p4T8 |
| 97 | C4×C2 | 1+240T2+28800T4+240p2T6+p4T8 |
show more | | |
show less | | |
L(s)=p∏ j=1∏8(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.945536706990464478146177546286, −7.87610034453133981741459986903, −7.82093062013373173431685175971, −7.58420339354765717340524314315, −7.26772986397110680071738196151, −7.17152183556223483653360433100, −6.39200259162056675645166996625, −6.37675623192398542502351789208, −6.20494577969483761611031721415, −5.89480714158431894335098077380, −5.66146869234467549316520572774, −5.42634059451941202387515861568, −5.37123198709216509579861239908, −5.12989219918026085971034929763, −4.54746904003177883314268759710, −3.89467172415305145333909008026, −3.78752791798539252294808926140, −3.69171182682501508444853310717, −2.85810297230598775477696347360, −2.73370984822445473800108118628, −2.54091915502585696429376100927, −2.49852174616488983608155380727, −1.96742849332664588346930030476, −1.42251241089855163724047909662, −0.31759997894220413338792641919,
0.31759997894220413338792641919, 1.42251241089855163724047909662, 1.96742849332664588346930030476, 2.49852174616488983608155380727, 2.54091915502585696429376100927, 2.73370984822445473800108118628, 2.85810297230598775477696347360, 3.69171182682501508444853310717, 3.78752791798539252294808926140, 3.89467172415305145333909008026, 4.54746904003177883314268759710, 5.12989219918026085971034929763, 5.37123198709216509579861239908, 5.42634059451941202387515861568, 5.66146869234467549316520572774, 5.89480714158431894335098077380, 6.20494577969483761611031721415, 6.37675623192398542502351789208, 6.39200259162056675645166996625, 7.17152183556223483653360433100, 7.26772986397110680071738196151, 7.58420339354765717340524314315, 7.82093062013373173431685175971, 7.87610034453133981741459986903, 7.945536706990464478146177546286