Properties

Label 392.2.e.a
Level 392392
Weight 22
Character orbit 392.e
Analytic conductor 3.1303.130
Analytic rank 00
Dimension 44
CM discriminant -8
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [392,2,Mod(195,392)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(392, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("392.195");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 392=2372 392 = 2^{3} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 392.e (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.130135759233.13013575923
Analytic rank: 00
Dimension: 44
Coefficient field: 4.0.2048.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+4x2+2 x^{4} + 4x^{2} + 2 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 7 7
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ2q2β3q3+2q4β1q62β2q8+(β27)q9+(3β22)q112β3q12+4q16+β3q17+(7β22)q18++(19β2+8)q99+O(q100) q - \beta_{2} q^{2} - \beta_{3} q^{3} + 2 q^{4} - \beta_1 q^{6} - 2 \beta_{2} q^{8} + (\beta_{2} - 7) q^{9} + ( - 3 \beta_{2} - 2) q^{11} - 2 \beta_{3} q^{12} + 4 q^{16} + \beta_{3} q^{17} + (7 \beta_{2} - 2) q^{18}+ \cdots + (19 \beta_{2} + 8) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+8q428q98q11+16q168q18+24q2220q2556q36+24q4316q44+40q5132q57+32q6416q72+84q81+40q86+48q88++32q99+O(q100) 4 q + 8 q^{4} - 28 q^{9} - 8 q^{11} + 16 q^{16} - 8 q^{18} + 24 q^{22} - 20 q^{25} - 56 q^{36} + 24 q^{43} - 16 q^{44} + 40 q^{51} - 32 q^{57} + 32 q^{64} - 16 q^{72} + 84 q^{81} + 40 q^{86} + 48 q^{88}+ \cdots + 32 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+4x2+2 x^{4} + 4x^{2} + 2 : Copy content Toggle raw display

β1\beta_{1}== ν3+6ν \nu^{3} + 6\nu Copy content Toggle raw display
β2\beta_{2}== ν2+2 \nu^{2} + 2 Copy content Toggle raw display
β3\beta_{3}== 2ν35ν -2\nu^{3} - 5\nu Copy content Toggle raw display
ν\nu== (β3+2β1)/7 ( \beta_{3} + 2\beta_1 ) / 7 Copy content Toggle raw display
ν2\nu^{2}== β22 \beta_{2} - 2 Copy content Toggle raw display
ν3\nu^{3}== (6β35β1)/7 ( -6\beta_{3} - 5\beta_1 ) / 7 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/392Z)×\left(\mathbb{Z}/392\mathbb{Z}\right)^\times.

nn 197197 295295 297297
χ(n)\chi(n) 1-1 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
195.1
0.765367i
0.765367i
1.84776i
1.84776i
−1.41421 2.93015i 2.00000 0 4.14386i 0 −2.82843 −5.58579 0
195.2 −1.41421 2.93015i 2.00000 0 4.14386i 0 −2.82843 −5.58579 0
195.3 1.41421 3.37849i 2.00000 0 4.77791i 0 2.82843 −8.41421 0
195.4 1.41421 3.37849i 2.00000 0 4.77791i 0 2.82843 −8.41421 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by Q(2)\Q(\sqrt{-2})
7.b odd 2 1 inner
56.e even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 392.2.e.a 4
4.b odd 2 1 1568.2.e.a 4
7.b odd 2 1 inner 392.2.e.a 4
7.c even 3 2 392.2.m.d 8
7.d odd 6 2 392.2.m.d 8
8.b even 2 1 1568.2.e.a 4
8.d odd 2 1 CM 392.2.e.a 4
28.d even 2 1 1568.2.e.a 4
28.f even 6 2 1568.2.q.f 8
28.g odd 6 2 1568.2.q.f 8
56.e even 2 1 inner 392.2.e.a 4
56.h odd 2 1 1568.2.e.a 4
56.j odd 6 2 1568.2.q.f 8
56.k odd 6 2 392.2.m.d 8
56.m even 6 2 392.2.m.d 8
56.p even 6 2 1568.2.q.f 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
392.2.e.a 4 1.a even 1 1 trivial
392.2.e.a 4 7.b odd 2 1 inner
392.2.e.a 4 8.d odd 2 1 CM
392.2.e.a 4 56.e even 2 1 inner
392.2.m.d 8 7.c even 3 2
392.2.m.d 8 7.d odd 6 2
392.2.m.d 8 56.k odd 6 2
392.2.m.d 8 56.m even 6 2
1568.2.e.a 4 4.b odd 2 1
1568.2.e.a 4 8.b even 2 1
1568.2.e.a 4 28.d even 2 1
1568.2.e.a 4 56.h odd 2 1
1568.2.q.f 8 28.f even 6 2
1568.2.q.f 8 28.g odd 6 2
1568.2.q.f 8 56.j odd 6 2
1568.2.q.f 8 56.p even 6 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(392,[χ])S_{2}^{\mathrm{new}}(392, [\chi]):

T34+20T32+98 T_{3}^{4} + 20T_{3}^{2} + 98 Copy content Toggle raw display
T5 T_{5} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T22)2 (T^{2} - 2)^{2} Copy content Toggle raw display
33 T4+20T2+98 T^{4} + 20T^{2} + 98 Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 (T2+4T14)2 (T^{2} + 4 T - 14)^{2} Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 T4+20T2+98 T^{4} + 20T^{2} + 98 Copy content Toggle raw display
1919 T4+52T2+98 T^{4} + 52T^{2} + 98 Copy content Toggle raw display
2323 T4 T^{4} Copy content Toggle raw display
2929 T4 T^{4} Copy content Toggle raw display
3131 T4 T^{4} Copy content Toggle raw display
3737 T4 T^{4} Copy content Toggle raw display
4141 T4+68T2+98 T^{4} + 68T^{2} + 98 Copy content Toggle raw display
4343 (T212T14)2 (T^{2} - 12 T - 14)^{2} Copy content Toggle raw display
4747 T4 T^{4} Copy content Toggle raw display
5353 T4 T^{4} Copy content Toggle raw display
5959 T4+356T2+28322 T^{4} + 356 T^{2} + 28322 Copy content Toggle raw display
6161 T4 T^{4} Copy content Toggle raw display
6767 (T272)2 (T^{2} - 72)^{2} Copy content Toggle raw display
7171 T4 T^{4} Copy content Toggle raw display
7373 T4+244T2+4802 T^{4} + 244T^{2} + 4802 Copy content Toggle raw display
7979 T4 T^{4} Copy content Toggle raw display
8383 T4+404T2+28322 T^{4} + 404 T^{2} + 28322 Copy content Toggle raw display
8989 T4+500T2+51842 T^{4} + 500 T^{2} + 51842 Copy content Toggle raw display
9797 T4+628T2+94178 T^{4} + 628 T^{2} + 94178 Copy content Toggle raw display
show more
show less