Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [392,2,Mod(195,392)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(392, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("392.195");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 392.e (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 4.0.2048.2 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
195.1 |
|
−1.41421 | − | 2.93015i | 2.00000 | 0 | 4.14386i | 0 | −2.82843 | −5.58579 | 0 | |||||||||||||||||||||||||||||
195.2 | −1.41421 | 2.93015i | 2.00000 | 0 | − | 4.14386i | 0 | −2.82843 | −5.58579 | 0 | ||||||||||||||||||||||||||||||
195.3 | 1.41421 | − | 3.37849i | 2.00000 | 0 | − | 4.77791i | 0 | 2.82843 | −8.41421 | 0 | |||||||||||||||||||||||||||||
195.4 | 1.41421 | 3.37849i | 2.00000 | 0 | 4.77791i | 0 | 2.82843 | −8.41421 | 0 | |||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.d | odd | 2 | 1 | CM by |
7.b | odd | 2 | 1 | inner |
56.e | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 392.2.e.a | ✓ | 4 |
4.b | odd | 2 | 1 | 1568.2.e.a | 4 | ||
7.b | odd | 2 | 1 | inner | 392.2.e.a | ✓ | 4 |
7.c | even | 3 | 2 | 392.2.m.d | 8 | ||
7.d | odd | 6 | 2 | 392.2.m.d | 8 | ||
8.b | even | 2 | 1 | 1568.2.e.a | 4 | ||
8.d | odd | 2 | 1 | CM | 392.2.e.a | ✓ | 4 |
28.d | even | 2 | 1 | 1568.2.e.a | 4 | ||
28.f | even | 6 | 2 | 1568.2.q.f | 8 | ||
28.g | odd | 6 | 2 | 1568.2.q.f | 8 | ||
56.e | even | 2 | 1 | inner | 392.2.e.a | ✓ | 4 |
56.h | odd | 2 | 1 | 1568.2.e.a | 4 | ||
56.j | odd | 6 | 2 | 1568.2.q.f | 8 | ||
56.k | odd | 6 | 2 | 392.2.m.d | 8 | ||
56.m | even | 6 | 2 | 392.2.m.d | 8 | ||
56.p | even | 6 | 2 | 1568.2.q.f | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
392.2.e.a | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
392.2.e.a | ✓ | 4 | 7.b | odd | 2 | 1 | inner |
392.2.e.a | ✓ | 4 | 8.d | odd | 2 | 1 | CM |
392.2.e.a | ✓ | 4 | 56.e | even | 2 | 1 | inner |
392.2.m.d | 8 | 7.c | even | 3 | 2 | ||
392.2.m.d | 8 | 7.d | odd | 6 | 2 | ||
392.2.m.d | 8 | 56.k | odd | 6 | 2 | ||
392.2.m.d | 8 | 56.m | even | 6 | 2 | ||
1568.2.e.a | 4 | 4.b | odd | 2 | 1 | ||
1568.2.e.a | 4 | 8.b | even | 2 | 1 | ||
1568.2.e.a | 4 | 28.d | even | 2 | 1 | ||
1568.2.e.a | 4 | 56.h | odd | 2 | 1 | ||
1568.2.q.f | 8 | 28.f | even | 6 | 2 | ||
1568.2.q.f | 8 | 28.g | odd | 6 | 2 | ||
1568.2.q.f | 8 | 56.j | odd | 6 | 2 | ||
1568.2.q.f | 8 | 56.p | even | 6 | 2 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|