L(s) = 1 | + 1.41·2-s − 3.37i·3-s + 2.00·4-s − 4.77i·6-s + 2.82·8-s − 8.41·9-s + 2.24·11-s − 6.75i·12-s + 4.00·16-s + 3.37i·17-s − 11.8·18-s + 1.39i·19-s + 3.17·22-s − 9.55i·24-s − 5·25-s + ⋯ |
L(s) = 1 | + 1.00·2-s − 1.95i·3-s + 1.00·4-s − 1.95i·6-s + 1.00·8-s − 2.80·9-s + 0.676·11-s − 1.95i·12-s + 1.00·16-s + 0.819i·17-s − 2.80·18-s + 0.321i·19-s + 0.676·22-s − 1.95i·24-s − 25-s + ⋯ |
Λ(s)=(=(392s/2ΓC(s)L(s)(−0.156+0.987i)Λ(2−s)
Λ(s)=(=(392s/2ΓC(s+1/2)L(s)(−0.156+0.987i)Λ(1−s)
Degree: |
2 |
Conductor: |
392
= 23⋅72
|
Sign: |
−0.156+0.987i
|
Analytic conductor: |
3.13013 |
Root analytic conductor: |
1.76921 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ392(195,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 392, ( :1/2), −0.156+0.987i)
|
Particular Values
L(1) |
≈ |
1.58950−1.86131i |
L(21) |
≈ |
1.58950−1.86131i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−1.41T |
| 7 | 1 |
good | 3 | 1+3.37iT−3T2 |
| 5 | 1+5T2 |
| 11 | 1−2.24T+11T2 |
| 13 | 1+13T2 |
| 17 | 1−3.37iT−17T2 |
| 19 | 1−1.39iT−19T2 |
| 23 | 1−23T2 |
| 29 | 1−29T2 |
| 31 | 1+31T2 |
| 37 | 1−37T2 |
| 41 | 1+8.15iT−41T2 |
| 43 | 1−13.0T+43T2 |
| 47 | 1+47T2 |
| 53 | 1−53T2 |
| 59 | 1−10.9iT−59T2 |
| 61 | 1+61T2 |
| 67 | 1+8.48T+67T2 |
| 71 | 1−71T2 |
| 73 | 1−14.9iT−73T2 |
| 79 | 1−79T2 |
| 83 | 1+17.7iT−83T2 |
| 89 | 1+12.1iT−89T2 |
| 97 | 1−15.7iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.59296748127714518510175290143, −10.59040095074913453359037541923, −8.886687424290441428635575306380, −7.82093062013373173431685175971, −7.17152183556223483653360433100, −6.20494577969483761611031721415, −5.66146869234467549316520572774, −3.89467172415305145333909008026, −2.49852174616488983608155380727, −1.42251241089855163724047909662,
2.73370984822445473800108118628, 3.78752791798539252294808926140, 4.54746904003177883314268759710, 5.42634059451941202387515861568, 6.37675623192398542502351789208, 7.87610034453133981741459986903, 9.171233930762076984237980125857, 9.811952300313011638445835120686, 10.83414947562781700621008444335, 11.40433405515417077862465219235