L(s) = 1 | + 1.41·2-s − 3.37i·3-s + 2.00·4-s − 4.77i·6-s + 2.82·8-s − 8.41·9-s + 2.24·11-s − 6.75i·12-s + 4.00·16-s + 3.37i·17-s − 11.8·18-s + 1.39i·19-s + 3.17·22-s − 9.55i·24-s − 5·25-s + ⋯ |
L(s) = 1 | + 1.00·2-s − 1.95i·3-s + 1.00·4-s − 1.95i·6-s + 1.00·8-s − 2.80·9-s + 0.676·11-s − 1.95i·12-s + 1.00·16-s + 0.819i·17-s − 2.80·18-s + 0.321i·19-s + 0.676·22-s − 1.95i·24-s − 25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.156 + 0.987i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.156 + 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.58950 - 1.86131i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.58950 - 1.86131i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - 1.41T \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + 3.37iT - 3T^{2} \) |
| 5 | \( 1 + 5T^{2} \) |
| 11 | \( 1 - 2.24T + 11T^{2} \) |
| 13 | \( 1 + 13T^{2} \) |
| 17 | \( 1 - 3.37iT - 17T^{2} \) |
| 19 | \( 1 - 1.39iT - 19T^{2} \) |
| 23 | \( 1 - 23T^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 + 31T^{2} \) |
| 37 | \( 1 - 37T^{2} \) |
| 41 | \( 1 + 8.15iT - 41T^{2} \) |
| 43 | \( 1 - 13.0T + 43T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 - 53T^{2} \) |
| 59 | \( 1 - 10.9iT - 59T^{2} \) |
| 61 | \( 1 + 61T^{2} \) |
| 67 | \( 1 + 8.48T + 67T^{2} \) |
| 71 | \( 1 - 71T^{2} \) |
| 73 | \( 1 - 14.9iT - 73T^{2} \) |
| 79 | \( 1 - 79T^{2} \) |
| 83 | \( 1 + 17.7iT - 83T^{2} \) |
| 89 | \( 1 + 12.1iT - 89T^{2} \) |
| 97 | \( 1 - 15.7iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.59296748127714518510175290143, −10.59040095074913453359037541923, −8.886687424290441428635575306380, −7.82093062013373173431685175971, −7.17152183556223483653360433100, −6.20494577969483761611031721415, −5.66146869234467549316520572774, −3.89467172415305145333909008026, −2.49852174616488983608155380727, −1.42251241089855163724047909662,
2.73370984822445473800108118628, 3.78752791798539252294808926140, 4.54746904003177883314268759710, 5.42634059451941202387515861568, 6.37675623192398542502351789208, 7.87610034453133981741459986903, 9.171233930762076984237980125857, 9.811952300313011638445835120686, 10.83414947562781700621008444335, 11.40433405515417077862465219235