L(s) = 1 | + (1 + 1.73i)5-s + (1.5 + 2.59i)9-s + (2 − 3.46i)11-s − 2·13-s + (−3 + 5.19i)17-s + (4 + 6.92i)19-s + (0.500 − 0.866i)25-s + 6·29-s + (4 − 6.92i)31-s + (1 + 1.73i)37-s − 2·41-s − 4·43-s + (−3 + 5.19i)45-s + (−4 − 6.92i)47-s + (−3 + 5.19i)53-s + ⋯ |
L(s) = 1 | + (0.447 + 0.774i)5-s + (0.5 + 0.866i)9-s + (0.603 − 1.04i)11-s − 0.554·13-s + (−0.727 + 1.26i)17-s + (0.917 + 1.58i)19-s + (0.100 − 0.173i)25-s + 1.11·29-s + (0.718 − 1.24i)31-s + (0.164 + 0.284i)37-s − 0.312·41-s − 0.609·43-s + (−0.447 + 0.774i)45-s + (−0.583 − 1.01i)47-s + (−0.412 + 0.713i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.701 - 0.712i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 392 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.701 - 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.38639 + 0.581016i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.38639 + 0.581016i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-1 - 1.73i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-2 + 3.46i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 2T + 13T^{2} \) |
| 17 | \( 1 + (3 - 5.19i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-4 - 6.92i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 6T + 29T^{2} \) |
| 31 | \( 1 + (-4 + 6.92i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-1 - 1.73i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 2T + 41T^{2} \) |
| 43 | \( 1 + 4T + 43T^{2} \) |
| 47 | \( 1 + (4 + 6.92i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (3 - 5.19i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3 + 5.19i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2 + 3.46i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 8T + 71T^{2} \) |
| 73 | \( 1 + (-5 + 8.66i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (8 + 13.8i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 8T + 83T^{2} \) |
| 89 | \( 1 + (3 + 5.19i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.32043421468784366133231299063, −10.36785676688309124009573448310, −9.929124609426543570709263219077, −8.539230659751575763907655294321, −7.76044616594718079628312705115, −6.54780586936613037623635497675, −5.86187912253282319375876365814, −4.46263616498577605798171719832, −3.19527635429439106026589972181, −1.80138803823286742340519672064,
1.15134921379481204045332394617, 2.82041761037243572874998032881, 4.52405899190915212718345758041, 5.06525128929975497774589015480, 6.71110751894114905772863100706, 7.14589684481559570253666464729, 8.725288688985365401154026504464, 9.439663427729552651315334271770, 9.917274417527311841030956296240, 11.40344511286972910858701886830