Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [392,2,Mod(177,392)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(392, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("392.177");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 392.i (of order , degree , not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 56) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a primitive root of unity . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
177.1 |
|
0 | 0 | 0 | 1.00000 | − | 1.73205i | 0 | 0 | 0 | 1.50000 | − | 2.59808i | 0 | ||||||||||||||||||||
361.1 | 0 | 0 | 0 | 1.00000 | + | 1.73205i | 0 | 0 | 0 | 1.50000 | + | 2.59808i | 0 | |||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
56.2.a.a | ✓ | 1 | 7.d | odd | 6 | 1 | |
112.2.a.b | 1 | 28.f | even | 6 | 1 | ||
392.2.a.d | 1 | 7.c | even | 3 | 1 | ||
392.2.i.c | 2 | 7.b | odd | 2 | 1 | ||
392.2.i.c | 2 | 7.d | odd | 6 | 1 | ||
392.2.i.d | 2 | 1.a | even | 1 | 1 | trivial | |
392.2.i.d | 2 | 7.c | even | 3 | 1 | inner | |
448.2.a.d | 1 | 56.j | odd | 6 | 1 | ||
448.2.a.e | 1 | 56.m | even | 6 | 1 | ||
504.2.a.c | 1 | 21.g | even | 6 | 1 | ||
784.2.a.e | 1 | 28.g | odd | 6 | 1 | ||
784.2.i.e | 2 | 28.d | even | 2 | 1 | ||
784.2.i.e | 2 | 28.f | even | 6 | 1 | ||
784.2.i.g | 2 | 4.b | odd | 2 | 1 | ||
784.2.i.g | 2 | 28.g | odd | 6 | 1 | ||
1008.2.a.d | 1 | 84.j | odd | 6 | 1 | ||
1400.2.a.g | 1 | 35.i | odd | 6 | 1 | ||
1400.2.g.g | 2 | 35.k | even | 12 | 2 | ||
1792.2.b.d | 2 | 112.v | even | 12 | 2 | ||
1792.2.b.i | 2 | 112.x | odd | 12 | 2 | ||
2800.2.a.p | 1 | 140.s | even | 6 | 1 | ||
2800.2.g.p | 2 | 140.x | odd | 12 | 2 | ||
3136.2.a.p | 1 | 56.k | odd | 6 | 1 | ||
3136.2.a.q | 1 | 56.p | even | 6 | 1 | ||
3528.2.a.x | 1 | 21.h | odd | 6 | 1 | ||
3528.2.s.e | 2 | 3.b | odd | 2 | 1 | ||
3528.2.s.e | 2 | 21.h | odd | 6 | 1 | ||
3528.2.s.t | 2 | 21.c | even | 2 | 1 | ||
3528.2.s.t | 2 | 21.g | even | 6 | 1 | ||
4032.2.a.bb | 1 | 168.ba | even | 6 | 1 | ||
4032.2.a.bk | 1 | 168.be | odd | 6 | 1 | ||
6776.2.a.g | 1 | 77.i | even | 6 | 1 | ||
7056.2.a.bo | 1 | 84.n | even | 6 | 1 | ||
9464.2.a.c | 1 | 91.s | odd | 6 | 1 | ||
9800.2.a.u | 1 | 35.j | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|