Properties

Label 392.2.i.d
Level 392392
Weight 22
Character orbit 392.i
Analytic conductor 3.1303.130
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [392,2,Mod(177,392)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(392, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("392.177");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 392=2372 392 = 2^{3} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 392.i (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.130135759233.13013575923
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a9]\Z[a_1, \ldots, a_{9}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 56)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+2ζ6q5+3ζ6q9+(4ζ6+4)q112q13+(6ζ66)q17+8ζ6q19+(ζ6+1)q25+6q29+(8ζ6+8)q31+2ζ6q37++12q99+O(q100) q + 2 \zeta_{6} q^{5} + 3 \zeta_{6} q^{9} + ( - 4 \zeta_{6} + 4) q^{11} - 2 q^{13} + (6 \zeta_{6} - 6) q^{17} + 8 \zeta_{6} q^{19} + ( - \zeta_{6} + 1) q^{25} + 6 q^{29} + ( - 8 \zeta_{6} + 8) q^{31} + 2 \zeta_{6} q^{37}+ \cdots + 12 q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q5+3q9+4q114q136q17+8q19+q25+12q29+8q31+2q374q418q436q458q476q53+16q556q614q65+4q67++24q99+O(q100) 2 q + 2 q^{5} + 3 q^{9} + 4 q^{11} - 4 q^{13} - 6 q^{17} + 8 q^{19} + q^{25} + 12 q^{29} + 8 q^{31} + 2 q^{37} - 4 q^{41} - 8 q^{43} - 6 q^{45} - 8 q^{47} - 6 q^{53} + 16 q^{55} - 6 q^{61} - 4 q^{65} + 4 q^{67}+ \cdots + 24 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/392Z)×\left(\mathbb{Z}/392\mathbb{Z}\right)^\times.

nn 197197 295295 297297
χ(n)\chi(n) 11 11 ζ6-\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
177.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 0 1.00000 1.73205i 0 0 0 1.50000 2.59808i 0
361.1 0 0 0 1.00000 + 1.73205i 0 0 0 1.50000 + 2.59808i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 392.2.i.d 2
3.b odd 2 1 3528.2.s.e 2
4.b odd 2 1 784.2.i.g 2
7.b odd 2 1 392.2.i.c 2
7.c even 3 1 392.2.a.d 1
7.c even 3 1 inner 392.2.i.d 2
7.d odd 6 1 56.2.a.a 1
7.d odd 6 1 392.2.i.c 2
21.c even 2 1 3528.2.s.t 2
21.g even 6 1 504.2.a.c 1
21.g even 6 1 3528.2.s.t 2
21.h odd 6 1 3528.2.a.x 1
21.h odd 6 1 3528.2.s.e 2
28.d even 2 1 784.2.i.e 2
28.f even 6 1 112.2.a.b 1
28.f even 6 1 784.2.i.e 2
28.g odd 6 1 784.2.a.e 1
28.g odd 6 1 784.2.i.g 2
35.i odd 6 1 1400.2.a.g 1
35.j even 6 1 9800.2.a.u 1
35.k even 12 2 1400.2.g.g 2
56.j odd 6 1 448.2.a.d 1
56.k odd 6 1 3136.2.a.p 1
56.m even 6 1 448.2.a.e 1
56.p even 6 1 3136.2.a.q 1
77.i even 6 1 6776.2.a.g 1
84.j odd 6 1 1008.2.a.d 1
84.n even 6 1 7056.2.a.bo 1
91.s odd 6 1 9464.2.a.c 1
112.v even 12 2 1792.2.b.d 2
112.x odd 12 2 1792.2.b.i 2
140.s even 6 1 2800.2.a.p 1
140.x odd 12 2 2800.2.g.p 2
168.ba even 6 1 4032.2.a.bb 1
168.be odd 6 1 4032.2.a.bk 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
56.2.a.a 1 7.d odd 6 1
112.2.a.b 1 28.f even 6 1
392.2.a.d 1 7.c even 3 1
392.2.i.c 2 7.b odd 2 1
392.2.i.c 2 7.d odd 6 1
392.2.i.d 2 1.a even 1 1 trivial
392.2.i.d 2 7.c even 3 1 inner
448.2.a.d 1 56.j odd 6 1
448.2.a.e 1 56.m even 6 1
504.2.a.c 1 21.g even 6 1
784.2.a.e 1 28.g odd 6 1
784.2.i.e 2 28.d even 2 1
784.2.i.e 2 28.f even 6 1
784.2.i.g 2 4.b odd 2 1
784.2.i.g 2 28.g odd 6 1
1008.2.a.d 1 84.j odd 6 1
1400.2.a.g 1 35.i odd 6 1
1400.2.g.g 2 35.k even 12 2
1792.2.b.d 2 112.v even 12 2
1792.2.b.i 2 112.x odd 12 2
2800.2.a.p 1 140.s even 6 1
2800.2.g.p 2 140.x odd 12 2
3136.2.a.p 1 56.k odd 6 1
3136.2.a.q 1 56.p even 6 1
3528.2.a.x 1 21.h odd 6 1
3528.2.s.e 2 3.b odd 2 1
3528.2.s.e 2 21.h odd 6 1
3528.2.s.t 2 21.c even 2 1
3528.2.s.t 2 21.g even 6 1
4032.2.a.bb 1 168.ba even 6 1
4032.2.a.bk 1 168.be odd 6 1
6776.2.a.g 1 77.i even 6 1
7056.2.a.bo 1 84.n even 6 1
9464.2.a.c 1 91.s odd 6 1
9800.2.a.u 1 35.j even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(392,[χ])S_{2}^{\mathrm{new}}(392, [\chi]):

T3 T_{3} Copy content Toggle raw display
T522T5+4 T_{5}^{2} - 2T_{5} + 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
1313 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
1717 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
1919 T28T+64 T^{2} - 8T + 64 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 (T6)2 (T - 6)^{2} Copy content Toggle raw display
3131 T28T+64 T^{2} - 8T + 64 Copy content Toggle raw display
3737 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
4141 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
4343 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
4747 T2+8T+64 T^{2} + 8T + 64 Copy content Toggle raw display
5353 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
6767 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
7171 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
7373 T210T+100 T^{2} - 10T + 100 Copy content Toggle raw display
7979 T2+16T+256 T^{2} + 16T + 256 Copy content Toggle raw display
8383 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
8989 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
9797 (T6)2 (T - 6)^{2} Copy content Toggle raw display
show more
show less