L(s) = 1 | + (−0.430 − 1.34i)2-s + (−1.62 + 1.15i)4-s − 2.93·5-s − 0.348·7-s + (2.26 + 1.69i)8-s + (1.26 + 3.95i)10-s + (3.04 + 1.31i)11-s + 1.83i·13-s + (0.150 + 0.469i)14-s + (1.30 − 3.77i)16-s + 3.20i·17-s + 7.57·19-s + (4.78 − 3.40i)20-s + (0.467 − 4.66i)22-s + 2.93i·23-s + ⋯ |
L(s) = 1 | + (−0.304 − 0.952i)2-s + (−0.814 + 0.579i)4-s − 1.31·5-s − 0.131·7-s + (0.800 + 0.599i)8-s + (0.400 + 1.25i)10-s + (0.917 + 0.397i)11-s + 0.508i·13-s + (0.0401 + 0.125i)14-s + (0.327 − 0.944i)16-s + 0.777i·17-s + 1.73·19-s + (1.07 − 0.762i)20-s + (0.0997 − 0.995i)22-s + 0.612i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 396 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.978 - 0.207i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 396 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.978 - 0.207i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.765038 + 0.0803967i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.765038 + 0.0803967i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.430 + 1.34i)T \) |
| 3 | \( 1 \) |
| 11 | \( 1 + (-3.04 - 1.31i)T \) |
good | 5 | \( 1 + 2.93T + 5T^{2} \) |
| 7 | \( 1 + 0.348T + 7T^{2} \) |
| 13 | \( 1 - 1.83iT - 13T^{2} \) |
| 17 | \( 1 - 3.20iT - 17T^{2} \) |
| 19 | \( 1 - 7.57T + 19T^{2} \) |
| 23 | \( 1 - 2.93iT - 23T^{2} \) |
| 29 | \( 1 - 5.84iT - 29T^{2} \) |
| 31 | \( 1 - 6.51iT - 31T^{2} \) |
| 37 | \( 1 + 4.63T + 37T^{2} \) |
| 41 | \( 1 + 9.98iT - 41T^{2} \) |
| 43 | \( 1 - 0.237T + 43T^{2} \) |
| 47 | \( 1 - 11.4iT - 47T^{2} \) |
| 53 | \( 1 - 8.21T + 53T^{2} \) |
| 59 | \( 1 - 1.36iT - 59T^{2} \) |
| 61 | \( 1 + 5.97iT - 61T^{2} \) |
| 67 | \( 1 + 0.639iT - 67T^{2} \) |
| 71 | \( 1 + 9.57iT - 71T^{2} \) |
| 73 | \( 1 - 14.9iT - 73T^{2} \) |
| 79 | \( 1 + 4.01T + 79T^{2} \) |
| 83 | \( 1 - 14.4T + 83T^{2} \) |
| 89 | \( 1 + 9.15T + 89T^{2} \) |
| 97 | \( 1 - 1.87T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.44059559379417948517556224699, −10.58151265371946808670306903257, −9.475943235763298632846809719781, −8.769276673389161968084476051264, −7.72774431630676119343440674182, −6.95780317050140761118509340706, −5.14061929854940575958564895251, −3.96872010430445929924835497834, −3.31626529628205309342710414705, −1.40651286137687673815646600590,
0.65430111562848531141642591195, 3.40094694952924317511467414554, 4.42033107367787448000593160024, 5.57962973598368976796880887552, 6.74304599721106947911566171067, 7.59327415960027241678951169841, 8.256008498716969384129230098757, 9.267954232736995696436263954971, 10.09678999419815520185231420740, 11.45851305606279640768514656268